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Abstract

We propose a new model of expected stock returns that incorporates quantity
information from market trading activities into the factor pricing framework. We
posit that the expected return of a stock is determined by not only its factor risk
exposures () but also the factor’s quantity fluctuations (¢) induced by trading
flows, and hence term the model beta times quantity (BTQ). The rationale is
that sophisticated investors should demand a higher factor premium when they
have absorbed noise trading flows of stocks with high loadings to that factor. The
BTQ model provides a compelling risk-based explanation for stock returns, which
is otherwise obscured without considering the quantity information. The cross-
sectional risk-return association, which is nearly flat unconditionally, strongly
depends on the quantity variable. The structured BT(Q model reliably predicts
monthly stock returns out of sample, and addresses the factor zoo problem by

selecting a small number of factors.
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1 Introduction

Explaining the expected returns of different stocks is a central question in asset pricing.
The theoretical answer is clear—risk—investors are averse to risk and require compensa-
tion for bearing risk. Therefore, riskier investments should earn higher expected returns in
equilibrium. However, the empirical answer has proven more complicated: evidence of the
risk-return tradeoff, such as their positive association in the cross section, is elusive in data;
and risk-based models hardly predict individual stock returns, in contrast to unstructured
predictions with firm characteristics and machine learning models.! A revamped model is
critically needed for the risk-based approach to expected returns.

This paper makes headway in this important area by incorporating a new aspect of
risk’s economic role in determining asset prices—the quantity variation in investors’ risk
holdings induced by trading flows. Many existing endeavors focus on the statistical aspects
of risk, such as identifying the common factors and estimating factor premiums, and on the
properties of the securities per se, such as risk exposures and firm characteristics.? We show
the canonical risk framework equipped with the quantity variables, which are constructed
from market trading activities and are about sophisticated investors’ risk-holding conditions,
yields a compelling explanation for the cross section of expected returns.

We integrate quantity into factor pricing by considering market trading activity’s effect on
sophisticated investors’ risk holdings and, in turn, their required compensation for bearing
risk. First, we acknowledge that the market is not populated with representative agents
but is modeled with two groups of investors: noise investors (such as retail investors) and
sophisticated investors (such as hedge funds and market makers). Noise investors generate
large and correlated flows in individual stocks. Sophisticated investors take the other side of

these trades, which causes fluctuations in the quantities of their holdings of the underlying

1See papers that report elusive risk-return association in Footnote 4 and those that predict stock returns
in Footnote 6.

2These related topics constitute a large and growing body of literature. We contribute to three sub-areas
with references listed in Footnotes 4, 6, and 7, respectively.



systematic risks. For example, if noise investors sell a large quantity of value stocks with
high HML (high-minus-low) loadings, sophisticated investors’ holdings of the HML risk will
increase. The sophisticated investors are the marginal investors whose demand determines
asset prices. We posit that they require greater compensation for a systematic risk factor
when they hold more of it, i.e., they have less demand for that risk. This gives rise to
a key innovation in factor model specification: a factor’s premium varies with the factor’s
quantity fluctuations induced by trading flows. Meanwhile, sophisticated investors enforce
no-arbitrage pricing across stocks, so the canonical factor pricing condition still holds. These
two forces combined give rise to our main empirical model, in which the expected return
of a stock is determined by the interactions of its factor risk exposures () and the factors’
quantity fluctuations induced by trading flows (short for “quantity” or variable ¢ throughout
the paper), which we term the beta times quantity (BTQ) model.

This framework, though still abstracted away from many details of the market microstruc-
ture, captures a significant economic force central to risk aversion that, nonetheless, has long
been missing in empirical studies of risk and return. The new mechanism considered here is
not new to the literature that studies the price impacts of noise trading flows for individual
assets, factor portfolios, or asset classes.> Our contribution is integrating quantities into the
factor pricing framework, which enables smooth upgrades of workhorse methods in cross-
sectional asset pricing research. We demonstrate that incorporating quantity information
leads to important empirical discoveries in the following three aspects.

First, quantity information elicits risk-return tradeoff relationships that would otherwise
be obscured. Previous studies report a flat security market line (SML, which plots expected
return Er against market f3), inconsistent with the theoretical premise of high-risk-high-

4

return.* However, a significant positive S-Er relation emerges conditional on high levels

of market factor q. That is, the risk-aversion implied high-risk-high-return relation holds

3See Gabaix and Koijen (2022) for a review. We discuss related papers in detail further below.

4Black (1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) report a flat SML.
Along this direction but with more involved investigations, Lopez-Lira and Roussanov (2020) question
whether common factor exposure () really explains the cross-sectional variation in average returns.



when sophisticated investors have absorbed more market factor quantity. In this view, the
previously reported flat SML is an unconditional average when the quantity information is
ignored.® Additional results that support this view are obtained with similar SMLs for other
factors, and with Fama-MacBeth regressions properly upgraded with quantity information.

Second, quantity information enables a risk-based model that predicts individual stock
returns. A central goal of asset pricing is to explain (conditional) expected returns, and sta-
tistically predicting individual stock returns serves as a touchstone for proposed explanations.
This task is empirically difficult, and researchers have only recently made significant progress
by resorting to unstructured machine learning models designed for forecasting and using a
large number of firm characteristics, which inevitably sacrifice interpretability. The state-
of-the-art methods can reliably predict stock returns at the monthly horizon, even though
the explained variation is small given the low signal-to-noise nature of market prices.® We
build an economically grounded predictor that interacts stock-level factor exposures () with
factor-level quantity fluctuations (¢). Beta times quantity (BTQ) reliably predicts the panel
of monthly individual stock returns with an OOS R? of around 1% in various robustness set-
tings, a level comparable to high-dimensional machine learning models. Without quantity,
the “B-only” model has almost no predictive power, consistent with previously reported null
results (Lopez-Lira and Roussanov, 2020).

Third, quantity information offers a new and better perspective to address the factor
zoo problem and provide new factor selection results. The proliferation of proposed factors
challenges the asset pricing literature regarding which factors are important for expected
returns and fundamental to investors’ pricing decisions. The existing tests focus on the

existence of factor premium: essentially, they ask whether there is a positive spread in

°Relatedly, Hong and Sraer (2016), Jylhi (2018), and Hendershott, Livdan, and Rosch (2020) find varying
slopes of the SML conditional on investor disagreement, margin requirements, and whether returns occur
during the day or night.

6Studies on stock (and equity portfolio) return forecasting include Fama and French (2008), Welch and
Goyal (2008), Koijen and Van Nieuwerburgh (2011), Rapach and Zhou (2013), and Lewellen (2014). More
recent advances with machine learning methods include Gu, Kelly, and Xiu (2020), Feng, He, and Polson
(2018), Freyberger, Neuhierl, and Weber (2020), Choi, Jiang, and Zhang (2023), and Kelly, Malamud, and
Zhou (2024).



expected returns between stocks with high and low factor exposures in the cross section.”

The new test asks an upgraded question on the quantity-driven changes of factor premium:
whether the expected return spread widens when the sophisticated investors’ factor quantity
(q) is high (and vice versa). For one, using quantity as an instrument for factor premium
provides more variation and, hence, greater identification power. More importantly, this
upgrade is more informative of the economic mechanism through which risk aversion takes
place and, therefore, should lead us closer to identifying the fundamental risks to investors.
We find the market factor is the most prominent in various specifications. A few other
factors are also selected, including betting-against-beta, volatility, idiosyncratic risk, and
value. However, size is dismissed in various settings, challenging its perceived importance as a
fundamental risk factor. These results are obtained with a variable selection method (Lasso)
that allows for the inclusion of a large number of candidate factors (including 153 factors
from Jensen, Kelly, and Pedersen, 2023, henceforth JKP). Alternatively, pre-processing the
candidate factors with principal component analysis (PCA) to “shrink the cross section”
(Kozak, Nagel, and Santosh, 2020) leads to a similar but even more parsimonious result in
which only the first two principal components are selected, and the return predictive power
is equally strong.

In summary, these results highlight the importance of incorporating quantity into the fac-
tor pricing framework to empirically establish a risk-based explanation of expected returns.
We emphasize the joint economic roles of quantity and risk in determining expected returns.
To sharpen this argument, we compare the BT(Q model with two alternative baseline mod-
els that contain only quantity or only risk. The “quantity-only” alternative disregards the

factor structure and arbitrage pricing condition, while the “f-only” model represents the

"The proliferation of proposed factors to explain the cross section of expected stock returns (a.k.a. the
factor zoo problem) is noted by Cochrane (2011), Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016),
and Hou, Xue, and Zhang (2017). Existing studies address the problem by selecting or “shrinking” the
factors (broadly speaking, estimating a low-dimensional factor space), including Feng, Giglio, and Xiu (2020),
Lettau and Pelger (2020), Kozak, Nagel, and Santosh (2020), Giglio, Liao, and Xiu (2021), and Giglio and
Xiu (2021). Essentially, they discipline a factor by whether its factor premium is positive (i.e., positive
cross-sectional risk-return association). In this sense, these are developments of the more traditional Fama
and MacBeth (1973) method.



traditional factor pricing framework that considers risk but not quantity. We find neither
alternative explains the cross section of expected returns.

First, the emphasis on risk (and the comparison with the “quantity-only” alternative) is
embedded in our construction of the g variables. They track the fluctuations of sophisticated
investors’ factor risk holdings induced by retail trading flows. This is achieved by aggregating
stock-level flows to the factor level according to each stock’s factor exposure (f) in a way
similar to “portfolio beta” used in risk management.® For example, if noise investors sell a
large quantity of value stocks with high HML loadings, then, from sophisticated investors’
perspective, ¢ of HML should increase accordingly. This construction reflects the economic
mechanism that investors are averse to systematic risk and the degree of aversion responds
to the quantity of systematic risk they hold.

This setup is contrasted with the “quantity-only” model, in which stock-level flows and
quantity variations directly affect stocks’ expected returns, short-circuiting the factor struc-
ture (see Figure 6 for the architecture comparison). This alternative model does not observe
the cross-sectional no-(statistical) arbitrage condition, and implies investors are seemingly
averse to the physical quantity of stocks rather than the systematic risk they represent.
We hardly find any predictive power for stock returns in various implementations of this
“quantity-only” model. This comparison highlights risk’s role in the BTQ model. It is
consistent with the view that statistical arbitrage activities by some sophisticated investors
are effective in determining the cross section of expected returns, even in the presence of
significant impacts of noise trading flows on prices (Kozak, Nagel, and Santosh, 2018). It
is also related to the contrast of macro vs. micro elasticities: stocks with comparable risk
loadings are close substitutes, while the demand for systematic risks is more inelastic to price
(Gabaix and Koijen, 2022; Li and Lin, 2022).

Second, the BT(Q model is a direct upgrade from the canonical factor pricing framework,

8Stock-level noise trading flows from retail investors are built from mutual fund holding and flow data
following standard procedures in the literature (Coval and Stafford, 2007; Froot and Ramadorai, 2008; Lou,
2012). See Section 3.2 for the complete constructing procedure of q.



in which the expected return is determined by a “S-only” baseline. The upgrade is analogous
to the difference-in-differences (DID) analysis commonly used in applied microeconomics: 3
captures the cross-sectional variation while ¢ provides the time-series variation in expected
returns. In this analogy, the “S-only” model has only one dimension of “difference,” and
assumes constant factor premiums. As discussed before, this upgrade brings greater identifi-
cation power as well as economic relevance in selecting the factors fundamental to investors
and asset pricing. Future empirical studies can easily subject a newly proposed factor to
BTQ factor pricing tests, given that the factor’s BT(Q term can be easily constructed from
factor returns. Similarly, quantity is smoothly integrated into several workhorse methods
in asset pricing research, including the security market line (SML), Fama-MacBeth regres-
sions, stock return prediction, and latent factor models. We show significant improvements
in empirical performances across these settings. These properties highlight the advantages
and broad applicability for future research to incorporate quantity into factor pricing.

Two related frameworks in the literature have differences with our research objective
and approach. First, we do not treat flow or quantity fluctuations as a source of risk, and
the constructed quantity time-series variables are not new risk factors.” Instead, we still
use previously proposed factors, and the newly proposed factor-level quantity variables work
together with risks in the form of “f times quantity”.

Second, this paper belongs to the burgeoning literature of demand-based asset pricing,
which argues that investor demand plays a critical role in determining asset prices and that
incorporating flow and quantity data can improve empirical asset pricing research (Koijen
and Yogo, 2019; Gabaix and Koijen, 2022; Koijen, Richmond, and Yogo, 2023). We focus
on the empirical study of the cross-section of expected stock returns, with return prediction

accuracy as the central criterion for empirical success.!® For this purpose, our approach

9The approach that treats flow or quantity information as a source of risk is related to De Long, Shleifer,
Summers, and Waldmann (1990), Shleifer and Vishny (1997), Adrian, Etula, and Muir (2014), He, Kelly,
and Manela (2017), and Dou, Kogan, and Wu (2022).

10Koijen and Yogo (2019) demonstrate the mean reversion in latent demand introduces a new source of
predictability for the cross-sectional variation in stock returns.



aligns more closely with the traditional factor pricing framework: we explicitly model returns’
factor structure; maintain the associated factor pricing condition; and contribute to solving
the factor zoo problem, rather than using the factor model as a micro-foundation for the
characteristic-based demand system. In terms of the core economic mechanism, we specify
that a factor’s premium varies with the factor’s quantity fluctuations induced by trading
flows (¢). This mechanism closely guides the construction of the quantity variable (¢) and
its incorporation into the factor pricing framework in the form of BT(Q. Koijen and Yogo’s
(2019) demand system models a stock’s demand elasticities with respect to a) the stock’s
price (or the market capitalization) and b) the stock’s factor risk exposures (proxied by
the stock’s characteristics). Neither is exactly our channel: a) operates at the stock level,
rather than the factor level, and b) is about the cross-sectional demand variation related to
a stock’s factor loadings or characteristics, rather than time-series demand variation driven
by aggregated factor risk quantity. In this sense, our channel aligns more closely with the
“macro” elasticities emphasized by Gabaix and Koijen (2022) because it is at the factor level.

Some existing papers have reported that trading flow or financial intermediaries’ holding
quantities are relevant for future returns in various settings. Examples include Teo and Woo
(2004), Ben-David, Li, Rossi, and Song (2022a), Kang, Rouwenhorst, and Tang (2022), Li
(2022), Li and Lin (2022), and Huang, Song, and Xiang (2024) in stock markets, Greenwood
and Vayanos (2014), Vayanos and Vila (2021), Bretscher, Schmid, Sen, and Sharma (2022),
and Jansen, Li, and Schmid (2024) in bond markets, Garleanu, Pedersen, and Poteshman
(2008) in option markets, and Moskowitz, Ross, Ross, and Vasudevan (2024) for covered-
interest parity (CIP) deviations. Unlike these papers, which focus on establishing the pricing
effects for individual assets, factor portfolios, or asset classes, our primary emphasis is on
integrating quantity into the factor pricing framework to investigate cross-sectional risk-

return tradeoffs.!!

L Additionally, Berk and Van Binsbergen (2016), Barber, Huang, and Odean (2016), and Ben-David, Li,
Rossi, and Song (2022b) use a revealed preference approach to determine which factors investors care about.
However, they do not focus on the asset pricing properties of the selected factors.



In the remainder of the paper, Section 2 provides the theoretical motivation, empirical
model, and methods; Section 3 constructs the quantity and other empirical measures; Sec-
tion 4 presents empirical results for the BTQ model; Section 5 contrasts the BT(Q with the

alternative “quantity-only” model; Section 6 concludes.

2 Theoretical motivation, empirical model, and methods

2.1 Theoretical motivation

The theoretical reason why quantity information should be integrated into factor pricing
is that market trading activities matter for sophisticated investors’ risk holdings and, in
turn, their required compensation for bearing risks. We focus on a prominent channel where
a significant aspect of trading activities, the noise trading flows, matters for the central
element of asset pricing, the factor premium, although there can be many other market
microstructure mechanisms in which trading activities have price impacts. We outline this
theoretical channel below.

Suppose the market is populated with two groups of investors: noise investors and so-
phisticated investors. Noise investors, such as retail traders, generate uninformed flows in
and out of individual stocks over time. The noise flows are large and correlated across stocks,
which can induce significant fluctuations when aggregated to the factor level.'?

Sophisticated investors, such as hedge funds and market makers, take the other side
of the retail trades by absorbing the noise flows and supplying liquidity. Therefore, noise
flows induce fluctuations in the sophisticated investors’ holding quantities of the underlying
systematic risks. For example, if retail investors sell lots of value stocks with high HML

exposures, then sophisticated investors will accumulate more HML risk holdings. The ag-

12Previous studies report (which we also confirm empirically) that the retail flows are not only significant
in magnitude but also correlated across stocks due to the commonality in retail investors’ trading behaviors.
The correlation aligns with investment styles, such that, say in one period, they tend to sell growth stocks
and in the next, they buy small (Li, 2022; Huang, Song, and Xiang, 2024). This fact supports that retail
flows can induce significant fluctuations in the quantity of risk when aggregated to the factor level.



gregation from stock-level flows to factor-level quantities accounts for each stock’s factor
exposure () in the fashion of “portfolio beta” commonly used in risk management (see
Section 3.2 for aggregation details). The sophisticated investors are the marginal investors
whose risk-holding conditions drive asset prices. They have limited capacity to bear risk and
absorb flows and require greater compensation for a systematic risk factor when they hold
more of it.'* This gives rise to the key model specification that a factor’s premium varies
with the factor’s quantity fluctuations induced by trading flows, and we hypothesize that
the relationship is positive. Meanwhile, sophisticated investors enforce no-arbitrage pricing
across stocks, so the canonical factor pricing condition still holds.!* These two forces com-
bined imply the main empirical model specified below, in which both the stock’s factor risk

exposures () and factor quantity (¢) determine its expected return.

2.2 Empirical model

The empirical model starts with the canonical factor pricing framework, in which the cross

section of stock returns follows a factor structure

K
Tit41l = Z Biktfrt1 + €ty Vi, t, (1)
k=1

where r; ;11 is the excess return of stock 7 in month ¢+ 1, k indexes factors, f is factor return
(zero-cost or excess return), and [ is the stock’s factor exposure, which is subsequently
estimated using realized daily returns. According to the APT (Ross, 1976), the cross section

of expected return follows the factor pricing condition,

K
Et [Ti,t-i-l] = Z Bi,k,tluk,ta V,La t7 (2)
k=1

13Limited risk-bearing capacity can arise from liquidity constraints or misallocation of risk, e.g., Adrian,
Etula, and Muir (2014); Gabaix and Maggiori (2015); He, Kelly, and Manela (2017); Kondor and Vayanos
(2019); Haddad and Muir (2021); Eisfeldt, Herskovic, and Liu (2024).

14This is consistent with Kozak, Nagel, and Santosh (2018), who argue that cross-sectional no-arbitrage
conditions are still valid in the presence of noise traders as long as there exist some sophisticated investors.



where E[r; +11] is the conditional expected stock return, our research object, and py, is the
factor premium conditional on time-t information.

The departure from the canonical framework lies in the modeling of the factor premium.
According to the theoretical motivation above, we specify that the factor premium is not a

constant but varies with the factor’s quantity fluctuations induced by trading flows.

Lot = o (Qrt) = o + MGt Vk,t, (3)

where the first equation is a general specification in which py, is an unspecified function of gy ;.
In most empirical settings, we implement a linear specification as in the second equation.'®
The first parameter py corresponds to the constant factor premium, which is the key interest
of estimation in traditional factor pricing tests. The linear coefficient A; is the new central
parameter of interest, which measures the sensitivity of the factor premium to the factor’s
quantity fluctuations.

Plugging the factor premium specification into the factor pricing condition (Eq. 3 into

Eq. 2), we arrive at the main empirical model, the beta times quantity (BTQ) model of

expected stock returns:

K K
Eyfrits1] = (Z Mkﬁi,k,t) + Z e Bi et Gt Vi, t. (4)
=1 =1

The first summation term is the traditional factor pricing model, which we refer to as the
“B-only” model, serving as the baseline in empirical comparisons. The second is the new
beta times quantity (BTQ) term. In empirical implementation, we often find the [-only
term is so close to zero (and so noisy for explaining expected returns) to the extent that

having it in the BT(Q model even hurts the empirical fit. Therefore, we typically omit the

15The linear specification can be microfounded using the standard theoretical framework with mean-
variance utility and normally distributed payoffs (see Rostek and Yoon, 2023). In the upgraded Fama-
MacBeth regressions of Section 4.2, we implement a non-parametric estimation of ug( - ). See Section 2.3
for an overview of the various parametric and non-parametric empirical methods.
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term in parentheses and only include the BTQ term.

The key hypothesis implied by the theoretical motivation is that, for a “true” fundamental
risk factor k, A\, > 0. The hypothesis means that the cross-sectional return dispersion
between high and low [ stocks widens when the factor’s quantity is high. This is similar
to the difference-in-differences (DID) analysis: [ captures the cross-sectional variation in
expected returns while ¢ provides the time-series variation. In other words, the observed
factor risk aversion is stronger when ¢ is high. This offers a new perspective compared to
the traditional hypothesis p; > 0, which asks whether higher exposure to that factor is
associated with higher average returns, i.e., only the first “difference” in the DID analysis.
The new test has more identification power provided by the time-series variation in q. More
importantly, this test has more economic relevance since ¢ variation tracks sophisticated
investors’ holding condition. Hence, we are no longer inferring investors’ risk pricing process
from asset and asset price information alone. Therefore, the new framework can lead us
closer to identifying the fundamental risks that investors care about.

The model allows for multiple factors and allows each to have a different A\, coefficient.
This is useful for testing each factor’s marginal importance in a joint setting, controlling for
other factors’ contribution to expected returns.'®

An important property of the sign of A, is noted. Regardless of the sign of the factor (e.g.,
small-minus-big or big-minus-small), the sign of A\ should, theoretically speaking, always be
positive. This is because when factor return f flips its sign, both g and ¢ flip their signs,
and [ times ¢ remains unchanged. A positive A\, estimate, nonetheless, is not empirically
guaranteed. Thus, it provides another layer of testing for the risk-based theory, regardless
of the specification of the factor’s sign. A negative \; estimate would be an unambiguous

rejection of the risk-based theory, and the empiricist could not blame the “wrong” sign of

6The model specifies that that factor k’s premium py; is affected only by its own quantity g ¢, not by
the quantities ¢;,, of other factors (in Eq. 3). Theoretically, this specification is justifiable when the factor
risks are non-redundant (which is particularly guaranteed for the selected factors and the orthogonalized
PC factors). Empirically, allowing for cross-factor interactions would complicate the model, increasing the
number of parameters from K to K2, which becomes particularly challenging when K is large.

11



the factor as an excuse. Notice that u; in the traditional S-only model does not have this
property: big-minus-small would have a negative .

We focus on testing the hypothesis “A\; > 07 in the cross-sectional setting of the BTQ
model (Eq. 4), not in the time series context of predicting factor returns fy ;11 with gx,.
Although the BTQ model is theoretically motivated by the time-series specification of factor
premium (Eq. 3), empirically, a positive time-series predictive coefficient between g, and
fri+1 is far from implying the cross-sectional hypothesis of Ay > 0. The gap between the
two is the cross-sectional variation of the risk exposures (), which is not present in the
time series setting. A similar gap is familiar in the traditional factor pricing framework: a
long-short portfolio with a high average return does not guarantee that it is a priced factor

in cross-sectional tests, such as the Fama-MacBeth regressions.

2.3 Empirical methods

We use a series of empirical methods to estimate and test the BTQ model. The methods are
presented as upgrades of familiar procedures in asset pricing, such as the security market
line, Fama-MacBeth factor premium estimates, and return prediction exercises, for ease of
comparison and to demonstrate the value of incorporating quantity information into the
factor model. We present an overview of the methods here, while the details are provided
when presenting the empirical results in Section 4.

From the methodological perspective, the progression of the methods can be seen as
gradually adding parameterization to the model of expected stock return. To start with,
the familiar security market line (SML) can be seen as a simple non-parametric model,
Ei[rit11] = Er(Bik+), where Er( - ) is an unspecified function. (The SML is typically esti-
mated with the market beta, i.e., k = MKT, but we implement it with other factors as well.)
The conditional SML (Section 4.1) upgrades it to a bi-variate non-parametric model that
includes q, Ei[r;s11] = Er(Bikt, qre). We estimate this non-parametric model with a simple

kernel method by binning observations of 5 and ¢. This method is easy to interpret via the

12



familiar SML plot, and clearly shows that ¢ is a highly relevant variable in the expected
return function (Er) with significant effects on the risk-return (8-Er) relation.

The second method, the quantity upgraded Fama-MacBeth factor premium estimates, is
semi-parametric (Section 4.2). It imposes a linear relationship between risk (5) and return
according to APT, but is still non-parametric about ¢’s effect: Er(5; ke, qut) = Bik.ttte(Qrt)s
where the factor premium function pg( - ) is left unspecified. It is still estimated non-
parametrically by binning g and averaging the returns of the Fama-MacBeth factor mimicking
portfolio (FMP, which are coefficients of cross-sectional regression r; ;11 on f3; ;) within each
bin.

Third, once the ug( - ) function is also specified as linear, we arrive at the parametric BTQ
model Er(Bixt, Q) = MeBiktdre The parametric setting easily accommodates multiple
factors, and is estimated with a linear predictive regression on the panel of stock returns
Titp1 = Zle MeBiktQrr + errorigpr (Section 4.3). Notice that each factor’s beta times
quantity (BTQ) term together serves as a predictor, and the BTQ terms of different factors
serve as multivariate predictors. Predicting stock returns has experienced significant progress
with firm characteristics and machine learning models. We follow the literature’s setup of
the stock return panel and evaluate our model with the same metric of empirical success,
the out-of-sample (OOS) prediction fit (R?) besides the in-sample (IS) R?.

Lastly, in response to the factor zoo problem, when the number of candidate factors
(K) is large, the number of BTQ predictors grows accordingly to more than 100. In such
a setting, we use machine learning methods designed for high-dimensional prediction, such
as Lasso, to select a small number of priced factors (Section 4.4). By inducing sparsity
in the A, coefficients, Lasso allows us to select a small number of BT(Q terms and reveal
which factors are priced in a joint setting, controlling for other factors. Additionally, we
follow Kozak, Nagel, and Santosh (2020) and pre-process the candidate factors with principal
component analysis (PCA). Then, we supply the principal component factors to the same

BTQ construction and Lasso prediction exercise (Section 4.5). The potential benefit of this

13



method is to “shrink the cross section” of factors and elicit latent factors that explain the
most time-series return variation of the many candidate factors, which according to existing
literature, can be more reliable candidate factors for explaining expected returns.

In summary, we put forward the message that integrating quantitative information into
various empirical methods can lead to significant empirical discoveries. We implement the
methods outlined above to support this message, although the methods here are far from
exhaustive, given the vast asset pricing literature. We believe the quantity variables can
similarly interact with many other existing methods and lead to a broad avenue of potential

empirical discoveries.

3 Constructing quantity (¢) and other variables

The data to run a BTQ predictive regression include the (unbalanced) panel of monthly
excess stock returns 7; ;41 and a panel of 3;;; and a time series of g, for each factor k,
for the right-hand side predictors. Among them, f3; ;. is constructed from the time series
of factor return fj, as in the first stage of the Fama-MacBeth procedure. The construction
of g is new. It requires the stock-level retail flow in the same unbalanced panel structure
as the returns, which is then aggregated to the factor level according to each stock’s factor
exposure measures. In summary, the source data are only the panel of returns and the panel
of flows at the stock level, with which one can calculate both £ and ¢ of any factor given the

time series of factor returns fj ;.

3.1 Return, risk, and flow variables constructed with standard procedures

The factor and stock return, risk exposure, and stock-level dollar flow variables are all
constructed with data sources and procedures standard in the literature.

We use delisting-adjusted stock returns from CRSP. The six Fama-French-Carhart (i.e.,
Fama and French, 1993, 2015; Carhart, 1997) factors are from Kenneth French’s website,

and the 153 Jensen, Kelly, and Pedersen (2023, JKP) factors are from the authors’ website.
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All returns are obtained in both daily and monthly frequencies in excess of the risk-free rate.

Each stock’s exposure to factor k in month ¢ is

C/O\Vt(ri,h fkt)
var,(fre)

Bi,k,t = Viata k7 (5)

where cov, and var, are realized covariance and variance estimated with daily returns in a
12-month rolling window up to month ¢.17

We construct the stock-level dollar flow flow?ft“k panel using the mutual fund flow-
induced trading (FIT) metric, proposed by Coval and Stafford (2007), Froot and Ramado-
rai (2008), and Lou (2012). We use the standard mutual fund data source but carefully
clean data errors by cross-validating several sources. In particular, we obtain monthly mu-
tual fund returns and characteristics from the CRSP Survivorship-Bias-Free Mutual Fund
database and quarterly holdings data from the Thomson/Refinitiv Mutual Fund Holdings
Data (S12). Our sample period spans from January 2000 through December 2022.'% The
mutual fund sample comprises both active and passive mutual funds. To ensure accuracy
in our flow measure, we cross-validate mutual funds’ monthly returns and total net assets
(TNA) obtained from the CRSP database with corresponding data from Morningstar and
Thomson/Refinitiv. In the process, we manually correct several data input inaccuracies.
Details regarding this process are in Appendix A.1.

The standard f lowfft“k construction procedure has three steps. First, dollar mutual fund

flows are

flowfund = TNAm,t — TNAm’t,1(1 + szﬁd% (6)

m,t

"Notice szt corresponds to the regression coefficient of a single-factor model. This is different from the
original Fama-MacBeth procedure, where the first stage is a multi-factor regression. A single-factor beta is
simply the realized covariance normalized by scalar variance and offers two advantages. First, multi-factor
regressions can be unreliable even with a moderately high number of factors. Second, a single-factor beta,
and consequently each factor’s BTQ term, can be constructed independently of other factors in the model,
allowing for a more convenient empirical procedure. See Feng, Giglio, and Xiu (2020) for a related discussion,
who also use covariances rather than multi-variate betas.

18The mutual fund industry witnessed significant growth and sustained inflows throughout the 1990s (Lou,
2012; Ben-David, Li, Rossi, and Song, 2022a). In the post-2000 era, the monthly flows of mutual funds have
generally maintained relative stability, prompting us to start our sample period from 2000, aligning with
Gabaix and Koijen (2022).
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where TNA,, ; is the total net assets of mutual fund m at the end of month ¢, and rf‘md is

mutual fund m’s net-of-fee return in month t.

Second, we allocate mutual fund flows to dollar stock-level flows, based on the established
assumption in the literature that mutual funds buy or sell stocks in proportion to their prior
holdings,

flowi* = Z flow S weight e, . (7)

i,m,quarter(t)—2
fund m

We use the negative sign to switch the perspective from retail investors to sophisticated
investors in accounting the flow. In particular, a positive flowfft“k dollar number indi-
cates that retail investors are selling stock ¢ in month ¢, and sophisticated investors are

buying. Moreover, we use the two-quarter-lagged mutual fund holding weight, denoted as

fund
i,m,quarter(t)—2"

weight; For instance, quarter(July) — 2 = Q1.1
In total, we have around 1,644,000 stock-month observations in a full sample of 276
months from January 2000 to December 2022, or on average around 6,000 stock-month

observations per month.

3.2 Constructing quantity variables

The construction of g is guided by the theoretical motivation in Section 2.1 and has two
steps. First, we aggregate stock-level flows to the factor level, using the same risk measures,

cove(Tit, fre), from Eq. 5:

flowgste = Zﬂowmkcovt Fies fr) = Zszwst()Ck@,k,tvfart(fk,t), Vk,t.  (8)

The use of a two-quarter lag deviates from the conventional one-quarter lag (Lou, 2012) to be more
conservative and ensures that the constructed flow“tock is observable with information up to month ¢. In
particular, mutual fund holding is reported with a maximum statutory delay of 45 days (Christoffersen,
Danesh, and Musto, 2015), which means the end of Q2 holdings may not be observable in July. By using
a two-quarter lag, July relies on the end of Q1 holdings, which are guaranteed to be available. Our results
remain robust when we apply the one-quarter lag commonly used in the literature. These results are available
upon request.
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The aggregation accounts for each stock’s factor exposure, in a similar spirit to calculating
the portfolio beta commonly used in risk management. The second expression in Eq. 8 is for
explaining the intuition: every month, the sophisticated investors add a marginal portfolio
to their existing holdings in response to retail flows, and f lowfft“k is the dollar weights of this
portfolio. The portfolio’s risk characteristics are determined by its composition (portfolio
weights f lowfft“k), as well as each constituent stock’s factor exposures (B\Zkt) For example, if
retail investors sell a large quantity of value stocks with high HML loadings, the sophisticated
investors’ HML quantity would experience a positive flow shock.?’ In this sense, we are indeed
tracking the quantity of factor risk, not the physical quantity of securities or portfolios.
Second, these flow shocks are normalized by the lagged total US stock market capitaliza-
tion and accumulated in a six-month lookback window,
f low%}fﬁ%

h—1

1
Qrt = — vk, t ith h = 6. 9
Qi h };) total stock market cap,_;/_;’ o A (9)

The normalization accounts for the upward trend in dollar flows that aligns with the overall
growth of the equity market as well as the growing capacities of sophisticated investors to
absorb these flows. Accumulating flow,fjftor over time accounts for the persistent effects of
older flows on future returns. What matters for the expected return in month ¢ 4+ 1 is the
factor quantity held at the end of month ¢, which is impacted by flow shocks in all previous
periods, flow™, flow*, flow;®'% ... The speed at which sophisticated investors can
absorb these shocks and eliminate their effect on risk premiums is not our research focus.
We accumulate past flows in a 6-month lookback window for simplicity and transparency to

avoid a more involved study of the speed. The empirical results are robust to alternative

specifications (see Section 4.6).

20Notice we aggregate flow to the factor level (HML in this example) based on each stock’s HML exposure
(8), not on the stock’s characteristics (the book-to-market ratio) or its weight in the HML portfolio. This
choice is based on the theoretical motivation that sophisticated investors are averse to factor risk, not the
factor portfolio itself. The goal is to measure the quantity variation in each factor’s risk, not the factor
portfolio itself. Li (2022) aggregates using portfolio weights, which can be reconciled with our framework if
characteristics are viewed as proxies for factor exposures.
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Figure 1: Quantity (gx,) time series plot
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Note: Time series of the constructed quantity (gy,.) variables for the Fama-French-Carhart factors. The
monthly observations span from January 2000 to December 2022.

In many empirical exercises, we standardize the raw g, time series as g+ = @it/ (q.t),
where o(qy,) is the full-sample time-series standard deviation, for ease of interpreting the

regression coefficients.

3.3 Basic properties of the constructed quantity variables

Next, we present the summary statistics of the flow-induced quantity, gy, the central new
variable introduced in this paper. Figure 1 shows the time-series plots of ¢, for the Fama-
French-Carhart (FF3C) factors. We plot the pre-standardized series ¢ to show magnitudes.?!
Table 1 presents the full-sample statistics of FF3C’s ¢ and summaries of these statistics across
the 153 JKP factors.

Examining the basic time series properties of g, we find that variation dominates its

21The magnitudes of ¢ are in the unit of 107%. The absolute level is irrelevant for empirical analysis, as
the variables are standardized in regressions. To understand this magnitude, we know the monthly mutual
fund flows are in the order of tens of billions of dollars, and the total market capitalization is in the order of
tens of trillions of dollars (see Appendix Figure A.1). So the first term in Eq. 8 is in the order of 1072 (given
market 3 around 1). The last term, monthly var:(fy ) is in the order of 1073, so ¢ is in the order of 107°.
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Table 1: Summary statistics of quantity gz, (unit: 107°%)

Fama-French-Carhart factors Across 153 JKP factors
MKT SMB HML MOM Q25 Median Q75
Mean 0.29 0.04 0.13 -0.15 -0.05 -0.01 0.03
Std 1.88 0.29 0.65 0.82 0.23 0.39 0.76

Note: The mean and standard deviation of the constructed quantity time series g ¢ for the Fama-French-
Carhart factors and JKP factors.

trend, making quantity fluctuation the primary feature compared to the secular trend in
retail flows. The series also exhibits dynamic volatility clustering, similar to that seen in
more familiar factor return time series.

Among the four factors plotted in Figure 1, MKT’s quantity (in blue) has the most time-
series variation. The reason is that most stocks have positive market beta centered around
one, so gukr, roughly aggregates the overall retail flows into (and out of) the entire mutual
fund sector. In contrast, the three long-short factors have stock betas that are more evenly
distributed around zero, so their gy series reflect the net retail flows into (and out of) stocks
of particular investment styles. Therefore, these series are not mechanically correlated, even
though they are all constructed from the same retail flow panel data.

Appendix B.1 reports the pairwise correlations of the four ¢, series are far from =+1,
indicating that series are not collinear. It also reports a principal component analysis (PCA)
on the gy, series for the 153 JKP factors. These series have a multi-factor structure with
independent variation along various dimensions and substantial idiosyncratic variation. This
result suggests each long-short factor’s quantity series offers valuable pricing information
beyond that of the market. It also means the results of BTQ’s predictive power further
below attained with different factors are not mechanically driven by repeated ¢ variations
and suggests the robustness of the underlying economic mechanism.

Turning to notable spikes in the plot, we note gukr; experiences significant increases dur-

ing the Global Financial Crisis and the COVID-19 pandemic in the spring of 2020. These
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spikes are attributed to significant outflows from mutual fund investors during these peri-
ods. As a result, the sophisticated investors’ risk holding quantity increases, making them
more “averse” to the market risk, which can be related to market crashes and subsequent
rebounds. However, this is a highly simplified and anecdotal explanation of the main eco-
nomic mechanism, as it does not consider cross-sectional variation in factor exposures, more

nuanced fluctuations, or factors beyond MKT. Next, we turn to formal empirical analysis.

4 Empirical results

4.1 Security market line (SML) depends on quantity

The security market line is a simple and familiar tool to visualize the relationship between
systematic risk exposure and expected return (S-Er) in the cross section of stocks without
resorting to parametric modeling. We construct the empirical SML and the upgraded ver-
sions conditional on factor ¢. We show the S-Er relationship is nearly flat unconditionally,
which is consistent with the existing empirical results that factor exposure alone cannot ad-
equately explain the cross-sectional variation in stock returns. However, once conditional on
quantity information, the SML reveals interesting risk-return patterns that strongly support
a risk-based explanation.

The unconditional SML displays the S5-Er relationship in the non-parametric regression
model: E;[r; ;1] = Er(fi ). We estimate it with a simple kernel method by sorting stock-
month observations into twenty quantile bins by B},wh and then plotting the average of r; 114
against the average szt within each bin. Notice return r; ;4 leads szt by one month, so
that it estimates conditional expected returns.

The upgraded SML conditional on quantity estimates the bi-variate non-parametric
model: E;[riiv1] = Er(Bikt, qut), and the purpose is to show the second entry, ¢, mat-
ters for the risk-return relationship. Again, we conduct a simple non-parametric estimation

for transparency and intuitiveness. The estimation procedure is the same as the uncondi-
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tional SML, but we further split each bin of stock-month observations into two sub-bins by
the time-series median of gy, and plot sub-bin average ;41 against average Bi,k,t.m

Figure 2 presents single-factor models using the Fama-French-Carhart factors (MKT,
SMB, HML, MOM), with black curves representing the unconditional SMLs, and red and
blue for conditional on high and low ¢y, respectively.

We find that the unconditional SML is nearly flat for the market factor, with a slight
downward slope in the higher beta range. This implies that the market beta alone cannot
explain the cross-sectional variation in expected returns, which is consistent with similar
reports in the existing literature. Similar null results for unconditional SMLs are observed
for SMB and MOM, while HML’s SML is slightly upward-sloping.

In contrast, the conditional SMLs show interesting risk-return patterns that are not
observable without conditioning on g. The high-¢ SMLs (red) exhibit a strong positive slope,
while the low-¢ (blue) SMLs are downward sloping. The two conditional SMLs have distinct
slopes, and the unconditional SML (black) lies in between them as the mixed average. The
positive high-¢ slope means the cross-sectional risk-return tradeoff is strong and positive,
suggesting that sophisticated investors demand higher additional compensation for bearing
high systematic risk investments in high-q environments. The negative low-¢ slope indicates
a negative risk-return tradeoff, suggesting that investors are more willing to hold high-
risk investments when they are required to sell lots of such stocks to retail traders in low-¢
months.?® The gaps in the slopes suggest that sophisticated investors’ risk-holding conditions
matter for their demand for risk, which significantly impacts the pricing of factor risks in
the cross section. Notice the four plots are produced with different g, time series and B\lkt

panels, yet the slope patterns are consistent across factors, suggesting the quantity’s effects

22Formally, an unconditional bin is defined as {(i,t) s.t. Bi,k,t € [a,b)}, where a and b are boundaries
of the 20 quantiles of BZ-,M, for example, the first pair is [quantile(g,h., 0%), quantile(ﬁ.’k,., 5%)). A “high
¢” bin is defined as {(i,t) s.t. szt € [a,b) and ¢, > median(gk,)}, where median(gy,.) is the time-series
median of g; ;. And, “low ¢” is the same as “high ¢” but with “>” replaced by “<”.

23The negative low-q slope is puzzling in the sense that it suggests a risk preference (rather than aversion)
in low-¢g months. The frictions regarding sophisticated investors’ risk management as described in Frazzini
and Pedersen (2014) can be a potential explanation, which is an interesting direction for future research.
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Figure 2: Security market line (SML) conditioning on quantity: E.[r;;11] = Er(Bi ks, Qrt)
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Note: Security market line (SML) plots expected stock returns against 8. The unconditional SML (black):
sorts the stock-month observations into twenty quantile bins of Bi,k,t and plots the average return 7;+11
against average B\i,k,t within each bin. The conditional SMLs (red for high ¢, blue for low ¢): the same
process but split bins by the time-series median of ¢ +. Notice the x- and y-axis scales are two times larger
in the bottom two panels than in the top two to accommodate the greater ranges of HML and MOM f’s.
on factor premiums is general and the underlying economic mechanism is robust.

The magnitude of ¢’s effects is economically massive. For instance, a market beta-neutral
stock has an expected return of around 0.75% per month unconditional on ¢. In contrast, for
a stock with a market beta of 1, the expected return is as high as 1.25% in high-g months or
0.25% in low-¢g months, with the average being still around 0.75%. The high v.s. low-g gap

is around 1% per month or more than 10% annualized. Such a gap is even greater for higher
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market [ stocks. For HML, the gap for a gy, = 1 stock is around 30% annualized, while
the HML-neutral stock’s expected return does not depend on ¢, shown by the crossing of the
three curves at Sgyr, = 0. This result reveals that HML is a salient fundamental factor for
sophisticated investors, as both high 8 exposure and high quantity holdings are compensated
by significantly higher risk premiums. For the SMB factor, while the general patterns of SML
slopes remain consistent, the effects of both # and ¢ are smaller in magnitude compared to
the other factors. We provide additional support for these findings and present more precise
point estimates using parametric estimations further below.?*

All the SMLs are approximately straight lines, regardless of their slopes, particularly
around the central range of 3, where most stocks are concentrated and sampling noise is
less pronounced. This linearity in 3 is consistent with the cross-sectional law of one price
(LOOP), although the slope (risk premium) can vary significantly with the ¢ condition.
Next, we specify the linearity of expected returns in 3, while still leaving the effect of ¢

non-parametric in an upgraded Fama-MacBeth regression framework.

4.2 Fama-MacBeth factor premium increases with quantity

We specify a linear relationship between factor exposure (8) and expected return, where
the linear coefficient (factor premium) is allowed to vary with quantity: Ev(0; s, qre) =
5i,k,tﬂk(Qk,t)-

To estimate this model, the first stage of the Fama-MacBeth regressions provides factor
risk exposures Bmt from time-series regression (already detailed in Section 3.1). The second

stage of the Fama-MacBeth regressions runs cross-sectional regression for each t:

Tit1 = Vht+10i ket + €TTOT; 411, Vi, (10)

24T¢ is also interesting to note that the crossings of the high/low-¢q and unconditional SMLs are at around
8 =0 for MKT and HML, but not for SMB and MOM. Crossing at 8 = 0 is consistent with the parametric
BTQ model and simpler to understand with the theoretical motivation: the expected return of a factor risk-
neutral stock should not be affected by that factor’s quantity fluctuations. Not crossing at § = 0 warrants
further investigation.
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where ;.41 is the Fama-MacBeth factor mimicking portfolio (FMP) return. Canonically,
the factor premium is estimated as the time-series average of 4 ,11. It measures the average
cross-sectional association between factor loading and stock return. It is often cited as
evidence against factor pricing because the unconditional Fama-MacBeth factor premium is
close to zero (Lopez-Lira and Roussanov, 2020).

The innovation is that we estimate the mean of 7 ;41 conditional on g ;. To this end, we
form four unit bins of gz (which is already standardized) and calculate the average of i ;11
in each bin. Figure 3 presents the conditional (solid lines) and the unconditional (dashed
lines) factor premiums for the four single-factor specifications.

The plot shows strong and consistent evidence that the Fama-MacBeth factor premium
is not zero but increasing in factor quantity g ;. Specifically, the cross-sectional risk-return
relationship is strong and positive when quantity g is high. And the factor premium
is negative when g, is low, suggesting that the risk-return tradeoff is reversed in low ¢
environments. On average, the unconditional premium is close to zero, but this reflects only
a small part of the interesting big picture that unfolds only when we condition on quantity.

The increasing relationship in g, (qx¢) is consistent across the four factors, although the
market factor exhibits the most substantial variation. The market factor premium varies
from less than —2% per month when market g is in the lowest (—2, —1) standard deviation
range to nearly +3% per month when market ¢ is in the (1,2) range. Consistent with the
SML results, the magnitude of factor premium fluctuation driven by g, can reach double-

digit annualized percentage points.

4.3 Beta times quantity (BTQ) forecasts individual stock returns

The empirical results so far with non-parametric plots show the quantity information signif-
icantly affects the cross-sectional risk-return relationship. Next, we turn to the parametric
BTQ model, which allows us to include multiple factors, provide more formal point esti-

mates, and conduct OOS model fit evaluation and factor selection tests. We show the BT(Q
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Figure 3: Fama-MacBeth factor premium conditioning on quantity, fu(qk+)
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Note: Fama-MacBeth factor mimicking portfolio returns (FMP, v, ;41) averaged unconditionally (dashed
line) and averaged within unit bins of ¢, (solid line).

model provides a compelling explanation for the expected return of individual stocks.
Once factor premium function g (g +) is specified as the linear form pu;(qx.¢) = Aegr.e, We
arrive at the parametric BTQ model, which is estimated as the following panel-wise return

predictive regression:
K

Piest = O MQeaBiks + €rrorisa, Vi, . (11)
k=1
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Table 2: Predicting stock returns with and without quantity, single factor

Fama-French-Carhart factors Across 153 JKP factors
MKT SMB HML MOM Q25 Median Q75

Panel A: IS R? comparison, full sample 2000-2022 (%)

BTQ 1.01 0.30 1.00 0.91 0.39 0.62 0.95
[-only 0.05 0.05 0.12 0.06 0.02 0.06 0.10

Panel B: OOS R? comparison, evaluation window 2010-2022 (%)

BTQ 0.75 0.60 0.84 0.65 0.20 0.38 0.67
[-only 0.05 -0.10 0.15 0.02 -0.03 0.04 0.11

Panel C: full-sample coefficient comparison: 2000-2022

BTQ

Ak 1.80 0.72 1.48 1.77 0.62 0.99 1.48
t-stat  (4.18) (2.76) (3.52) (3.38) (2.24) (2.96) (3.69)
[-only

[k 0.38 0.31 0.56 -0.50 -0.33 -0.14 0.22
t-stat  (1.07) (1.25) (1.71) (-1.23) (-1.52) (-0.71) (1.11)

Note: BTQ and f-only return predictions (Eq. 11 and 12), single-factor models (K = 1). The first four
columns repeat the same prediction exercises with £ = MKT, SMB, HML, and MOM, respectively. The last
three columns report the summary statistics across the 153 JKP factors. The t-statistics (in parentheses) are
calculated using standard errors clustered by month. Return prediction R? is calculated without demeaning
(R :=1-32, , (Tie41 — Firg1)/ > it Tiep1, Where Ty 44y is predicted return) throughout the paper following
Gu, Kelly, and Xiu (2020).

We compare it with the “S-only” model, which is implied by a constant factor premium pu:
K

Pianl = 3 kBiks + errorip, Vi, . (12)
k=1

We first present the results of the single-factor predictive regressions (K = 1) with k£ =
each of the four Fama-French-Carhart factors (MKT, SMB, HML, MOM) and the 153 JKP
factors (Table 2).

The key finding is that the BTQ model significantly outperforms the (-only model in
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predicting stock returns, with substantial R? improvements across different factor choices
and in both in-sample and out-of-sample evaluations.?” Even with only one factor, the BTQ
model’s OOS return predictive R?’s are around 0.8% for MKT and HML, which are among
the ones with a high model fit in the 153 JKP factors. The median OOS R? across the 153
JKP factors is around 0.4%, and 139 out of the 153 factors have an OOS R? above 0. This
level of predictability is economically significant and comparable to unstructured machine
learning models that use a large number of firm characteristics to predict stock returns. The
state-of-the-art machine learning models typically achieve an OOS R? of around 1% to 2%
in the literature. In contrast, the S-only models have a low R? around 0, and 50 out of the
153 JKP factors have a negative OOS R2.

Turning to the coefficients estimates, the BTQ model’s A\, are significantly positive for all
four Fama-French-Carhart factors and most of the 153 JKP factors. The economic magnitude
of the A, estimates is substantial. For example, Ayt = 1.8%, meaning for one standard
deviation increase in market factor ¢, the expected return of a stock with a market beta of
1 increases by 1.8% per month, or 1.8% x 2 = 3.6% per month for a stock with a market
beta of 2, so on and so forth. In contrast, the S-only model’s p; coefficients are mostly
statistically insignificant from zero, and 90 out of the 153 JKP factors even have negative
coefficient point estimates.

In summary, the single-factor results show the BT(Q model already reliably predicts stock
returns, the coefficients are consistent with the risk-based explanation, and the $-only model
fails in both model fit and coefficient estimates.

In addition, Appendix Table A.1 presents an incidental empirical finding: each factor’s
return fy ¢41 is predictable by its quantity ¢, with the predictive coefficients predominantly
positive and statistically significant. Additionally, the OOS R*’s are unstable and mostly
negative, due to the limited statistical power of the simple time-series prediction of factor

returns. As discussed in Section 2.2, while this time-series predictability is consistent with

2For O0S evaluations, we estimate the model parameters (\; and jy) using the sample period from 2000
to 2009 and apply these estimates to calculate the OOS R? for the period from 2010 to 2022.
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the BTQ model’s cross-sectional return predictability, it is a much weaker result to argue for
quantity’s pricing power and peripheral to our research focus (more discussion in Appendix
B.2).

Moving onto multi-factor models, Table 3 presents the results for these models while
maintaining a relatively low dimensionality with K < 6. This is achieved by using various
combinations of the Fama-French-Five-Carhart factors. The BTQ model still significantly
outperforms the [-only model in all multi-factor specifications. Allowing multiple factors
further boosts BTQ’s predictive accuracy with the best OOS R? values reaching above 1%.
In contrast, the -only model still barely predicts stock returns with low R? values even in
sample.

In terms of factor importance, controlling for other factors’ contributions, MKT is the
most prominent with the highest and most statistically significant coefficients across all
multi-factor models, even though Ayxr attenuates when more factors are included. HML
and MOM also have positive coefficients but are statistically insignificant. When these
factors are added to the model, both IS and OOS R? increase, indicating that their BTQ
terms provide additional predictive power, and that they are priced factors. SMB, CMA, and
RMW7s coefficients are near zero or negative, indicating they are not priced factors according
to the BTQ model. This is also consistent with the fact that the OOS R? drops when adding
these factors to the model. The S-only model’s i coefficients are all insignificant from zero
or negative. (These numbers are relegated to Appendix Table A.2.)

Comparing BTQ’s IS v.s. OOS model fits, we see slight reductions in R? when moving
from IS to OOS for CAPM, FF3, and FF3C. This indicates mild overfitting or parameter
instability issues. It underscores the robustness of the BTQ model’s predictive power, es-
pecially considering the inherent difficulty of forecasting monthly stock returns d