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Abstract

We propose a new model of expected stock returns that incorporates quantity

information from market trading activities into the factor pricing framework. We

posit that the expected return of a stock is determined by not only its factor risk

exposures (β) but also the factor’s quantity fluctuations (q) induced by trading

flows, and hence term the model beta times quantity (BTQ). The rationale is

that sophisticated investors should demand a higher factor premium when they

have absorbed noise trading flows of stocks with high loadings to that factor. The

BTQ model provides a compelling risk-based explanation for stock returns, which

is otherwise obscured without considering the quantity information. The cross-

sectional risk-return association, which is nearly flat unconditionally, strongly

depends on the quantity variable. The structured BTQ model reliably predicts

monthly stock returns out of sample, and addresses the factor zoo problem by

selecting a small number of factors.
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1 Introduction

Explaining the expected returns of different stocks is a central question in asset pricing.

The theoretical answer is clear—risk—investors are averse to risk and require compensa-

tion for bearing risk. Therefore, riskier investments should earn higher expected returns in

equilibrium. However, the empirical answer has proven more complicated: evidence of the

risk-return tradeoff, such as their positive association in the cross section, is elusive in data;

and risk-based models hardly predict individual stock returns, in contrast to unstructured

predictions with firm characteristics and machine learning models.1 A revamped model is

critically needed for the risk-based approach to expected returns.

This paper makes headway in this important area by incorporating a new aspect of

risk’s economic role in determining asset prices—the quantity variation in investors’ risk

holdings induced by trading flows. Many existing endeavors focus on the statistical aspects

of risk, such as identifying the common factors and estimating factor premiums, and on the

properties of the securities per se, such as risk exposures and firm characteristics.2 We show

the canonical risk framework equipped with the quantity variables, which are constructed

from market trading activities and are about sophisticated investors’ risk-holding conditions,

yields a compelling explanation for the cross section of expected returns.

We integrate quantity into factor pricing by considering market trading activity’s effect on

sophisticated investors’ risk holdings and, in turn, their required compensation for bearing

risk. First, we acknowledge that the market is not populated with representative agents

but is modeled with two groups of investors: noise investors (such as retail investors) and

sophisticated investors (such as hedge funds and market makers). Noise investors generate

large and correlated flows in individual stocks. Sophisticated investors take the other side of

these trades, which causes fluctuations in the quantities of their holdings of the underlying

1See papers that report elusive risk-return association in Footnote 4 and those that predict stock returns
in Footnote 6.

2These related topics constitute a large and growing body of literature. We contribute to three sub-areas
with references listed in Footnotes 4, 6, and 7, respectively.
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systematic risks. For example, if noise investors sell a large quantity of value stocks with

high HML (high-minus-low) loadings, sophisticated investors’ holdings of the HML risk will

increase. The sophisticated investors are the marginal investors whose demand determines

asset prices. We posit that they require greater compensation for a systematic risk factor

when they hold more of it, i.e., they have less demand for that risk. This gives rise to

a key innovation in factor model specification: a factor’s premium varies with the factor’s

quantity fluctuations induced by trading flows. Meanwhile, sophisticated investors enforce

no-arbitrage pricing across stocks, so the canonical factor pricing condition still holds. These

two forces combined give rise to our main empirical model, in which the expected return

of a stock is determined by the interactions of its factor risk exposures (β) and the factors’

quantity fluctuations induced by trading flows (short for “quantity” or variable q throughout

the paper), which we term the beta times quantity (BTQ) model.

This framework, though still abstracted away from many details of the market microstruc-

ture, captures a significant economic force central to risk aversion that, nonetheless, has long

been missing in empirical studies of risk and return. The new mechanism considered here is

not new to the literature that studies the price impacts of noise trading flows for individual

assets, factor portfolios, or asset classes.3 Our contribution is integrating quantities into the

factor pricing framework, which enables smooth upgrades of workhorse methods in cross-

sectional asset pricing research. We demonstrate that incorporating quantity information

leads to important empirical discoveries in the following three aspects.

First, quantity information elicits risk-return tradeoff relationships that would otherwise

be obscured. Previous studies report a flat security market line (SML, which plots expected

return Er against market β), inconsistent with the theoretical premise of high-risk-high-

return.4 However, a significant positive β-Er relation emerges conditional on high levels

of market factor q. That is, the risk-aversion implied high-risk-high-return relation holds

3See Gabaix and Koijen (2022) for a review. We discuss related papers in detail further below.
4Black (1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) report a flat SML.

Along this direction but with more involved investigations, Lopez-Lira and Roussanov (2020) question
whether common factor exposure (β) really explains the cross-sectional variation in average returns.
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when sophisticated investors have absorbed more market factor quantity. In this view, the

previously reported flat SML is an unconditional average when the quantity information is

ignored.5 Additional results that support this view are obtained with similar SMLs for other

factors, and with Fama-MacBeth regressions properly upgraded with quantity information.

Second, quantity information enables a risk-based model that predicts individual stock

returns. A central goal of asset pricing is to explain (conditional) expected returns, and sta-

tistically predicting individual stock returns serves as a touchstone for proposed explanations.

This task is empirically difficult, and researchers have only recently made significant progress

by resorting to unstructured machine learning models designed for forecasting and using a

large number of firm characteristics, which inevitably sacrifice interpretability. The state-

of-the-art methods can reliably predict stock returns at the monthly horizon, even though

the explained variation is small given the low signal-to-noise nature of market prices.6 We

build an economically grounded predictor that interacts stock-level factor exposures (β) with

factor-level quantity fluctuations (q). Beta times quantity (BTQ) reliably predicts the panel

of monthly individual stock returns with an OOS R2 of around 1% in various robustness set-

tings, a level comparable to high-dimensional machine learning models. Without quantity,

the “β-only” model has almost no predictive power, consistent with previously reported null

results (Lopez-Lira and Roussanov, 2020).

Third, quantity information offers a new and better perspective to address the factor

zoo problem and provide new factor selection results. The proliferation of proposed factors

challenges the asset pricing literature regarding which factors are important for expected

returns and fundamental to investors’ pricing decisions. The existing tests focus on the

existence of factor premium: essentially, they ask whether there is a positive spread in

5Relatedly, Hong and Sraer (2016), Jylhä (2018), and Hendershott, Livdan, and Rösch (2020) find varying
slopes of the SML conditional on investor disagreement, margin requirements, and whether returns occur
during the day or night.

6Studies on stock (and equity portfolio) return forecasting include Fama and French (2008), Welch and
Goyal (2008), Koijen and Van Nieuwerburgh (2011), Rapach and Zhou (2013), and Lewellen (2014). More
recent advances with machine learning methods include Gu, Kelly, and Xiu (2020), Feng, He, and Polson
(2018), Freyberger, Neuhierl, and Weber (2020), Choi, Jiang, and Zhang (2023), and Kelly, Malamud, and
Zhou (2024).
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expected returns between stocks with high and low factor exposures in the cross section.7

The new test asks an upgraded question on the quantity-driven changes of factor premium:

whether the expected return spread widens when the sophisticated investors’ factor quantity

(q) is high (and vice versa). For one, using quantity as an instrument for factor premium

provides more variation and, hence, greater identification power. More importantly, this

upgrade is more informative of the economic mechanism through which risk aversion takes

place and, therefore, should lead us closer to identifying the fundamental risks to investors.

We find the market factor is the most prominent in various specifications. A few other

factors are also selected, including betting-against-beta, volatility, idiosyncratic risk, and

value. However, size is dismissed in various settings, challenging its perceived importance as a

fundamental risk factor. These results are obtained with a variable selection method (Lasso)

that allows for the inclusion of a large number of candidate factors (including 153 factors

from Jensen, Kelly, and Pedersen, 2023, henceforth JKP). Alternatively, pre-processing the

candidate factors with principal component analysis (PCA) to “shrink the cross section”

(Kozak, Nagel, and Santosh, 2020) leads to a similar but even more parsimonious result in

which only the first two principal components are selected, and the return predictive power

is equally strong.

In summary, these results highlight the importance of incorporating quantity into the fac-

tor pricing framework to empirically establish a risk-based explanation of expected returns.

We emphasize the joint economic roles of quantity and risk in determining expected returns.

To sharpen this argument, we compare the BTQ model with two alternative baseline mod-

els that contain only quantity or only risk. The “quantity-only” alternative disregards the

factor structure and arbitrage pricing condition, while the “β-only” model represents the

7The proliferation of proposed factors to explain the cross section of expected stock returns (a.k.a. the
factor zoo problem) is noted by Cochrane (2011), Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016),
and Hou, Xue, and Zhang (2017). Existing studies address the problem by selecting or “shrinking” the
factors (broadly speaking, estimating a low-dimensional factor space), including Feng, Giglio, and Xiu (2020),
Lettau and Pelger (2020), Kozak, Nagel, and Santosh (2020), Giglio, Liao, and Xiu (2021), and Giglio and
Xiu (2021). Essentially, they discipline a factor by whether its factor premium is positive (i.e., positive
cross-sectional risk-return association). In this sense, these are developments of the more traditional Fama
and MacBeth (1973) method.
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traditional factor pricing framework that considers risk but not quantity. We find neither

alternative explains the cross section of expected returns.

First, the emphasis on risk (and the comparison with the “quantity-only” alternative) is

embedded in our construction of the q variables. They track the fluctuations of sophisticated

investors’ factor risk holdings induced by retail trading flows. This is achieved by aggregating

stock-level flows to the factor level according to each stock’s factor exposure (β) in a way

similar to “portfolio beta” used in risk management.8 For example, if noise investors sell a

large quantity of value stocks with high HML loadings, then, from sophisticated investors’

perspective, q of HML should increase accordingly. This construction reflects the economic

mechanism that investors are averse to systematic risk and the degree of aversion responds

to the quantity of systematic risk they hold.

This setup is contrasted with the “quantity-only” model, in which stock-level flows and

quantity variations directly affect stocks’ expected returns, short-circuiting the factor struc-

ture (see Figure 6 for the architecture comparison). This alternative model does not observe

the cross-sectional no-(statistical) arbitrage condition, and implies investors are seemingly

averse to the physical quantity of stocks rather than the systematic risk they represent.

We hardly find any predictive power for stock returns in various implementations of this

“quantity-only” model. This finding is consistent with the view that statistical arbitrage

activities by some sophisticated investors are effective in determining the cross section of

expected returns, even in the presence of significant impacts of noise trading flows on prices

(Kozak, Nagel, and Santosh, 2018).

Second, the BTQ model is a direct upgrade from the canonical factor pricing framework,

in which the expected return is determined by a “β-only” baseline. The upgrade is analogous

to the difference-in-differences (DID) analysis commonly used in applied microeconomics: β

captures the cross-sectional variation while q provides the time-series variation in expected

8Stock-level noise trading flows from retail investors are built from mutual fund holding and flow data
following standard procedures in the literature (Coval and Stafford, 2007; Froot and Ramadorai, 2008; Lou,
2012). See Section 3.2 for the complete constructing procedure of q.
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returns. In this analogy, the “β-only” model has only one dimension of “difference,” and

assumes constant factor premiums. As discussed before, this upgrade brings greater identifi-

cation power as well as economic relevance in selecting the factors fundamental to investors

and asset pricing. Future empirical studies can easily subject a newly proposed factor to

BTQ factor pricing tests, given that the factor’s BTQ term can be easily constructed from

factor returns. Similarly, quantity is smoothly integrated into several workhorse methods

in asset pricing research, including the security market line (SML), Fama-MacBeth regres-

sions, stock return prediction, and latent factor models. We show significant improvements

in empirical performances across these settings. These properties highlight the advantages

and broad applicability for future research to incorporate quantity into factor pricing.

Two related frameworks in the literature differ from our research approach and objective.

First, we do not treat flow or quantity fluctuations as a source of risk, and the constructed

quantity time-series variables are not new risk factors.9 Instead, we still use previously

proposed factors, and the newly proposed factor-level quantity variables work together with

risks in the form of “β times quantity”.

Second, this paper belongs to the general agenda that argues investor demand mat-

ters for asset prices and that adopting flow and quantity data can improve empirical asset

pricing research (Gabaix and Maggiori, 2015; Koijen and Yogo, 2019; Gabaix and Koijen,

2022; Koijen, Richmond, and Yogo, 2023). Our core economic mechanism recognizes that

sophisticated investors have limited risk-bearing capacities, such that asset prices (or, in our

implementation, factor premiums) respond to factor-level quantities inelastically (Gabaix

and Koijen, 2022).10 However, we focus on connecting this idea more closely to the factor

pricing framework because of its empirical relevance for studying the cross section of ex-

pected returns. One difference is our empirical objective is expected future returns rather

9The approach that treats flow or quantity information as a source of risk is related to De Long, Shleifer,
Summers, and Waldmann (1990), Shleifer and Vishny (1997), Adrian, Etula, and Muir (2014), He, Kelly,
and Manela (2017), and Dou, Kogan, and Wu (2022).

10Limited risk-bearing capacity can arise from liquidity constraints or misallocation of risk (e.g., Gabaix
and Maggiori, 2015; Kondor and Vayanos, 2019; Eisfeldt, Herskovic, and Liu, 2024).
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than concurrent price changes in response to flow shocks. Second, the factor structure of

stock returns and the associated no-arbitrage pricing condition are still front and center in

our modeling. Individual stock flows are aggregated to the factor level and work through

factor premiums to affect the cross section of expected returns. This difference is reflected

in the comparison with the “quantity-only” model discussed above.

Some existing papers have reported that trading flow or financial intermediaries’ holding

quantities are relevant for future returns in various settings. Examples include Teo and Woo

(2004), Ben-David, Li, Rossi, and Song (2022a), Kang, Rouwenhorst, and Tang (2022), Li

(2022), Li and Lin (2022), and Huang, Song, and Xiang (2024) in stock markets, Greenwood

and Vayanos (2014) and Vayanos and Vila (2021) in bond markets, Garleanu, Pedersen, and

Poteshman (2008) in option markets, and Moskowitz, Ross, Ross, and Vasudevan (2024) for

covered-interest parity (CIP) deviations. Unlike these papers, which focus on establishing the

pricing effects for individual assets, factor portfolios, or asset classes, our primary emphasis

is on integrating quantity into the factor pricing framework to investigate cross-sectional

risk-return tradeoffs.11

In the remainder of the paper, Section 2 provides the theoretical motivation, empirical

model, and methods; Section 3 constructs the quantity and other empirical measures; Sec-

tion 4 presents empirical results for the BTQ model; Section 5 contrasts the BTQ with the

alternative “quantity-only” model; Section 6 concludes.

2 Theoretical motivation, empirical model, and methods

2.1 Theoretical motivation

The theoretical reason why quantity information should be integrated into factor pricing

is that market trading activities matter for sophisticated investors’ risk holdings and, in

11Additionally, Berk and Van Binsbergen (2016), Barber, Huang, and Odean (2016), and Ben-David, Li,
Rossi, and Song (2022b) use a revealed preference approach to determine which factors investors care about.
However, they do not focus on the asset pricing properties of the selected factors.
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turn, their required compensation for bearing risks. We focus on a prominent channel where

a significant aspect of trading activities, the noise trading flows, matters for the central

element of asset pricing, the factor premium, although there can be many other market

microstructure mechanisms in which trading activities have price impacts. We outline this

theoretical channel below.

Suppose the market is populated with two groups of investors: noise investors and so-

phisticated investors. Noise investors, such as retail traders, generate uninformed flows in

and out of individual stocks over time. The noise flows are large and correlated across stocks,

which can induce significant fluctuations when aggregated to the factor level.12

Sophisticated investors, such as hedge funds and market makers, take the other side

of the retail trades by absorbing the noise flows and supplying liquidity. Therefore, noise

flows induce fluctuations in the sophisticated investors’ holding quantities of the underlying

systematic risks. For example, if retail investors sell lots of value stocks with high HML

exposures, then sophisticated investors will accumulate more HML risk holdings. The ag-

gregation from stock-level flows to factor-level quantities accounts for each stock’s factor

exposure (β) in the fashion of “portfolio beta” commonly used in risk management (see

Section 3.2 for aggregation details). The sophisticated investors are the marginal investors

whose risk-holding conditions drive asset prices. They require greater compensation for a

systematic risk factor when they hold more of it. This gives rise to the key model specifi-

cation that a factor’s premium varies with the factor’s quantity fluctuations induced by the

trading flows, and we hypothesize that the relationship is positive. Meanwhile, sophisticated

investors enforce no-arbitrage pricing across stocks, so the canonical factor pricing condition

still holds.13 These two forces combined imply the main empirical model specified below,

12Previous studies report (which we also confirm empirically) that the retail flows are not only significant
in magnitude but also correlated across stocks due to the commonality in retail investors’ trading behaviors.
The correlation aligns with investment styles, such that, say in one period, they tend to sell growth stocks
and in the next, they buy small (Li, 2022; Huang, Song, and Xiang, 2024). This fact supports that retail
flows can induce significant fluctuations in the quantity of risk when aggregated to the factor level.

13This is consistent with Kozak, Nagel, and Santosh (2018), who argue that cross-sectional no-arbitrage
conditions are still valid in the presence of noise traders as long as there exist some sophisticated investors.
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in which both the stock’s factor risk exposures (β) and factor quantity (q) determine its

expected return.

2.2 Empirical model

The empirical model starts with the canonical factor pricing framework, in which the cross

section of stock returns follows a factor structure

ri,t+1 =
K∑
k=1

βi,k,tfk,t+1 + ϵi,t+1, ∀i, t, (1)

where ri,t+1 is the excess return of stock i in month t+1, k indexes factors, f is factor return

(zero-cost or excess return), and β is the stock’s factor exposure, which is subsequently

estimated using realized daily returns. According to the APT (Ross, 1976), the cross section

of expected return follows the factor pricing condition,

Et[ri,t+1] =
K∑
k=1

βi,k,tµk,t, ∀i, t, (2)

where Et[ri,t+1] is the conditional expected stock return, our research object, and µk,t is the

factor premium conditional on time-t information.

The departure from the canonical framework lies in the modeling of the factor premium.

According to the theoretical motivation above, we specify that the factor premium is not a

constant but varies with the factor’s quantity fluctuations induced by trading flows.

µk,t = µk(qk,t) = µk + λkqk,t, ∀k, t, (3)

where the first equation is a general specification in which µk is an unspecified function of qk,t.

In most empirical settings, we implement a linear specification as in the second equation.14

14The linear specification can be microfounded using the standard theoretical framework with mean-
variance utility and normally distributed payoffs (see Rostek and Yoon, 2023). In the upgraded Fama-
MacBeth regressions of Section 4.2, we implement a non-parametric estimation of µk( · ). See Section 2.3
for an overview of the various parametric and non-parametric empirical methods.
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The first parameter µk corresponds to the constant factor premium, which is the key interest

of estimation in traditional factor pricing tests. The linear coefficient λk is the new central

parameter of interest, which measures the sensitivity of the factor premium to the factor’s

quantity fluctuations.

Plugging the factor premium specification into the factor pricing condition (Eq. 3 into

Eq. 2), we arrive at the main empirical model, the beta times quantity (BTQ) model of

expected stock returns:

Et[ri,t+1] =

(
K∑
k=1

µkβi,k,t

)
+

K∑
k=1

λkβi,k,tqk,t, ∀i, t. (4)

The first summation term is the traditional factor pricing model, which we refer to as the

“β-only” model, serving as the baseline in empirical comparisons. The second is the new

beta times quantity (BTQ) term. In empirical implementation, we often find the β-only

term is so close to zero (and so noisy for explaining expected returns) to the extent that

having it in the BTQ model even hurts the empirical fit. Therefore, we typically omit the

term in parentheses and only include the BTQ term.

The key hypothesis implied by the theoretical motivation is that, for a “true” fundamental

risk factor k, λk > 0. The hypothesis means that the cross-sectional return dispersion

between high and low β stocks widens when the factor’s quantity is high. This is similar

to the difference-in-differences (DID) analysis: β captures the cross-sectional variation in

expected returns while q provides the time-series variation. In other words, the observed

factor risk aversion is stronger when q is high. This offers a new perspective compared to

the traditional hypothesis µk > 0, which asks whether higher exposure to that factor is

associated with higher average returns, i.e., only the first “difference” in the DID analysis.

The new test has more identification power provided by the time-series variation in q. More

importantly, this test has more economic relevance since q variation tracks sophisticated

investors’ holding condition. Hence, we are no longer inferring investors’ risk pricing process
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from asset and asset price information alone. Therefore, the new framework can lead us

closer to identifying the fundamental risks that investors care about.

The model allows for multiple factors and allows each to have a different λk coefficient.

This is useful for testing each factor’s marginal importance in a joint setting, controlling for

other factors’ contribution to expected returns.15

An important property of the sign of λk is noted. Regardless of the sign of the factor (e.g.,

small-minus-big or big-minus-small), the sign of λk should, theoretically speaking, always be

positive. This is because when factor return f flips its sign, both β and q flip their signs,

and β times q remains unchanged. A positive λk estimate, nonetheless, is not empirically

guaranteed. Thus, it provides another layer of testing for the risk-based theory, regardless

of the specification of the factor’s sign. A negative λk estimate would be an unambiguous

rejection of the risk-based theory, and the empiricist could not blame the “wrong” sign of

the factor as an excuse. Notice that µk in the traditional β-only model does not have this

property: big-minus-small would have a negative µk.

We focus on testing the hypothesis “λk > 0” in the cross-sectional setting of the BTQ

model (Eq. 4), not in the time series context of predicting factor returns fk,t+1 with qk,t.

Although the BTQ model is theoretically motivated by the time-series specification of factor

premium (Eq. 3), empirically, a positive time-series predictive coefficient between qk,t and

fk,t+1 is far from implying the cross-sectional hypothesis of λk > 0. The gap between the

two is the cross-sectional variation of the risk exposures (β), which is not present in the

time series setting. A similar gap is familiar in the traditional factor pricing framework: a

long-short portfolio with a high average return does not guarantee that it is a priced factor

in cross-sectional tests, such as the Fama-MacBeth regressions.

15The model specifies that that factor k’s premium µk,t is affected only by its own quantity qk,t, not by
the quantities qj,t of other factors (in Eq. 3). Theoretically, this specification is justifiable when the factor
risks are non-redundant (which is particularly guaranteed for the selected factors and the orthogonalized
PC factors). Empirically, allowing for cross-factor interactions would complicate the model, increasing the
number of parameters from K to K2, which becomes particularly challenging when K is large.
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2.3 Empirical methods

We use a series of empirical methods to estimate and test the BTQ model. The methods are

presented as upgrades of familiar procedures in asset pricing, such as the security market

line, Fama-MacBeth factor premium estimates, and return prediction exercises, for ease of

comparison and to demonstrate the value of incorporating quantity information into the

factor model. We present an overview of the methods here, while the details are provided

when presenting the empirical results in Section 4.

From the methodological perspective, the progression of the methods can be seen as

gradually adding parameterization to the model of expected stock return. To start with,

the familiar security market line (SML) can be seen as a simple non-parametric model,

Et[ri,t+1] = Er(βi,k,t), where Er( · ) is an unspecified function. (The SML is typically esti-

mated with the market beta, i.e., k = MKT, but we implement it with other factors as well.)

The conditional SML (Section 4.1) upgrades it to a bi-variate non-parametric model that

includes q, Et[ri,t+1] = Er(βi,k,t, qk,t). We estimate this non-parametric model with a simple

kernel method by binning observations of β and q. This method is easy to interpret via the

familiar SML plot, and clearly shows that q is a highly relevant variable in the expected

return function (Er) with significant effects on the risk-return (β-Er) relation.

The second method, the quantity upgraded Fama-MacBeth factor premium estimates, is

semi-parametric (Section 4.2). It imposes a linear relationship between risk (β) and return

according to APT, but is still non-parametric about q’s effect: Er(βi,k,t, qk,t) = βi,k,tµk(qk,t),

where the factor premium function µk( · ) is left unspecified. It is still estimated non-

parametrically by binning q and averaging the returns of the Fama-MacBeth factor mimicking

portfolio (FMP, which are coefficients of cross-sectional regression ri,t+1 on βi,k,t) within each

bin.

Third, once the µk( · ) function is also specified as linear, we arrive at the parametric BTQ

model Er(βi,k,t, qk,t) = λkβi,k,tqk,t. The parametric setting easily accommodates multiple

factors, and is estimated with a linear predictive regression on the panel of stock returns

12



ri,t+1 =
∑K

k=1 λkβi,k,tqk,t + errori,t+1 (Section 4.3). Notice that each factor’s beta times

quantity (BTQ) term together serves as a predictor, and the BTQ terms of different factors

serve as multivariate predictors. Predicting stock returns has experienced significant progress

with firm characteristics and machine learning models. We follow the literature’s setup of

the stock return panel and evaluate our model with the same metric of empirical success,

the out-of-sample (OOS) prediction fit (R2) besides the in-sample (IS) R2.

Lastly, in response to the factor zoo problem, when the number of candidate factors

(K) is large, the number of BTQ predictors grows accordingly to more than 100. In such

a setting, we use machine learning methods designed for high-dimensional prediction, such

as Lasso, to select a small number of priced factors (Section 4.4). By inducing sparsity

in the λk coefficients, Lasso allows us to select a small number of BTQ terms and reveal

which factors are priced in a joint setting, controlling for other factors. Additionally, we

follow Kozak, Nagel, and Santosh (2020) and pre-process the candidate factors with principal

component analysis (PCA). Then, we supply the principal component factors to the same

BTQ construction and Lasso prediction exercise (Section 4.5). The potential benefit of this

method is to “shrink the cross section” of factors and elicit latent factors that explain the

most time-series return variation of the many candidate factors, which according to existing

literature, can be more reliable candidate factors for explaining expected returns.

In summary, we put forward the message that integrating quantitative information into

various empirical methods can lead to significant empirical discoveries. We implement the

methods outlined above to support this message, although the methods here are far from

exhaustive, given the vast asset pricing literature. We believe the quantity variables can

similarly interact with many other existing methods and lead to a broad avenue of potential

empirical discoveries.
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3 Constructing quantity (q) and other variables

The data to run a BTQ predictive regression include the (unbalanced) panel of monthly

excess stock returns ri,t+1 and a panel of βi,k,t and a time series of qk,t, for each factor k,

for the right-hand side predictors. Among them, βi,k,t is constructed from the time series

of factor return fk,t as in the first stage of the Fama-MacBeth procedure. The construction

of qk,t is new. It requires the stock-level retail flow in the same unbalanced panel structure

as the returns, which is then aggregated to the factor level according to each stock’s factor

exposure measures. In summary, the source data are only the panel of returns and the panel

of flows at the stock level, with which one can calculate both β and q of any factor given the

time series of factor returns fk,t.

3.1 Return, risk, and flow variables constructed with standard procedures

The factor and stock return, risk exposure, and stock-level dollar flow variables are all

constructed with data sources and procedures standard in the literature.

We use delisting-adjusted stock returns from CRSP. The six Fama-French-Carhart (i.e.,

Fama and French, 1993, 2015; Carhart, 1997) factors are from Kenneth French’s website,

and the 153 Jensen, Kelly, and Pedersen (2023, JKP) factors are from the authors’ website.

All returns are obtained in both daily and monthly frequencies in excess of the risk-free rate.

Each stock’s exposure to factor k in month t is

β̂i,k,t :=
ĉovt(ri,t, fk,t)

v̂art(fk,t)
, ∀i, t, k, (5)

where ĉovt and v̂art are realized covariance and variance estimated with daily returns in a

12-month rolling window up to month t.16

16Notice β̂i,k,t corresponds to the regression coefficient of a single-factor model. This is different from the
original Fama-MacBeth procedure, where the first stage is a multi-factor regression. A single-factor beta is
simply the realized covariance normalized by scalar variance and offers two advantages. First, multi-factor
regressions can be unreliable even with a moderately high number of factors. Second, a single-factor beta,
and consequently each factor’s BTQ term, can be constructed independently of other factors in the model,
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We construct the stock-level dollar flow flowstock
i,t panel using the mutual fund flow-

induced trading (FIT) metric, proposed by Coval and Stafford (2007), Froot and Ramado-

rai (2008), and Lou (2012). We use the standard mutual fund data source but carefully

clean data errors by cross-validating several sources. In particular, we obtain monthly mu-

tual fund returns and characteristics from the CRSP Survivorship-Bias-Free Mutual Fund

database and quarterly holdings data from the Thomson/Refinitiv Mutual Fund Holdings

Data (S12). Our sample period spans from January 2000 through December 2022.17 The

mutual fund sample comprises both active and passive mutual funds. To ensure accuracy

in our flow measure, we cross-validate mutual funds’ monthly returns and total net assets

(TNA) obtained from the CRSP database with corresponding data from Morningstar and

Thomson/Refinitiv. In the process, we manually correct several data input inaccuracies.

Details regarding this process are in Appendix A.1.

The standard flowstock
i,t construction procedure has three steps. First, dollar mutual fund

flows are

flowfund
m,t := TNAm,t − TNAm,t−1(1 + rfundm,t ), (6)

where TNAm,t is the total net assets of mutual fund m at the end of month t, and rfundm,t is

mutual fund m’s net-of-fee return in month t.

Second, we allocate mutual fund flows to dollar stock-level flows, based on the established

assumption in the literature that mutual funds buy or sell stocks in proportion to their prior

holdings,

flowstock
i,t := −

∑
fund m

flowfund
m,t weight

fund
i,m,quarter(t)−2 . (7)

We use the negative sign to switch the perspective from retail investors to sophisticated

allowing for a more convenient empirical procedure. See Feng, Giglio, and Xiu (2020) for a related discussion,
who also use covariances rather than multi-variate betas.

17The mutual fund industry witnessed significant growth and sustained inflows throughout the 1990s (Lou,
2012; Ben-David, Li, Rossi, and Song, 2022a). In the post-2000 era, the monthly flows of mutual funds have
generally maintained relative stability, prompting us to start our sample period from 2000, aligning with
Gabaix and Koijen (2022).
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investors in accounting the flow. In particular, a positive flowstock
i,t dollar number indi-

cates that retail investors are selling stock i in month t, and sophisticated investors are

buying. Moreover, we use the two-quarter-lagged mutual fund holding weight, denoted as

weightfundi,m,quarter(t)−2. For instance, quarter(July)− 2 = Q1.18

In total, we have around 1,644,000 stock-month observations in a full sample of 276

months from January 2000 to December 2022, or on average around 6,000 stock-month

observations per month.

3.2 Constructing quantity variables

The construction of qk,t is guided by the theoretical motivation in Section 2.1 and has two

steps. First, we aggregate stock-level flows to the factor level, using the same risk measures,

ĉovt(ri,t, fk,t), from Eq. 5:

flowfactor
k,t :=

∑
i

flowstock
i,t ĉovt(ri,t, fk,t) =

∑
i

flowstock
i,t β̂i,k,tv̂art(fk,t), ∀k, t. (8)

The aggregation accounts for each stock’s factor exposure, in a similar spirit to calculating

the portfolio beta commonly used in risk management. The second expression in Eq. 8 is for

explaining the intuition: every month, the sophisticated investors add a marginal portfolio

to their existing holdings in response to retail flows, and flowstock
i,t is the dollar weights of this

portfolio. The portfolio’s risk characteristics are determined by its composition (portfolio

weights flowstock
i,t ), as well as each constituent stock’s factor exposures (β̂i,k,t). For example, if

retail investors sell a large quantity of value stocks with high HML loadings, the sophisticated

investors’ HML quantity would experience a positive flow shock.19 In this sense, we are indeed

18The use of a two-quarter lag deviates from the conventional one-quarter lag (Lou, 2012) to be more
conservative and ensures that the constructed flowstock

i,t is observable with information up to month t. In
particular, mutual fund holding is reported with a maximum statutory delay of 45 days (Christoffersen,
Danesh, and Musto, 2015), which means the end of Q2 holdings may not be observable in July. By using
a two-quarter lag, July relies on the end of Q1 holdings, which are guaranteed to be available. Our results
remain robust when we apply the one-quarter lag commonly used in the literature. These results are available
upon request.

19Notice we aggregate flow to the factor level (HML in this example) based on each stock’s HML exposure
(β), not on the stock’s characteristics (the book-to-market ratio) or its weight in the HML portfolio. This

16



tracking the quantity of factor risk, not the physical quantity of securities or portfolios.

Second, these flow shocks are normalized by the lagged total US stock market capitaliza-

tion and accumulated in a six-month lookback window,

q̃k,t :=
1

h

h−1∑
h′=0

flowfactor
k,t−h′

total stock market capt−h′−1

, ∀k, t, with h = 6. (9)

The normalization accounts for the upward trend in dollar flows that aligns with the overall

growth of the equity market as well as the growing capacities of sophisticated investors to

absorb these flows. Accumulating flowfactor
k,t over time accounts for the persistent effects of

older flows on future returns. What matters for the expected return in month t + 1 is the

factor quantity held at the end of month t, which is impacted by flow shocks in all previous

periods, flowfactor
k,t , f lowfactor

k,t−1 , f low
factor
k,t−2 . . . The speed at which sophisticated investors can

absorb these shocks and eliminate their effect on risk premiums is not our research focus.

We accumulate past flows in a 6-month lookback window for simplicity and transparency to

avoid a more involved study of the speed. The empirical results are robust to alternative

specifications (see Section 4.6).

In many empirical exercises, we standardize the raw q̃k,t time series as qk,t := q̃k,t/σ(q̃k,t),

where σ(q̃k,t) is the full-sample time-series standard deviation, for ease of interpreting the

regression coefficients.

3.3 Basic properties of the constructed quantity variables

Next, we present the summary statistics of the flow-induced quantity, q̃k,t, the central new

variable introduced in this paper. Figure 1 shows the time-series plots of q̃k,t for the Fama-

French-Carhart (FF3C) factors. We plot the pre-standardized series q̃ to show magnitudes.20

choice is based on the theoretical motivation that sophisticated investors are averse to factor risk, not the
factor portfolio itself. The goal is to measure the quantity variation in each factor’s risk, not the factor
portfolio itself. Li (2022) aggregates using portfolio weights, which can be reconciled with our framework if
characteristics are viewed as proxies for factor exposures.

20The magnitudes of q̃ are in the unit of 10−6. The absolute level is irrelevant for empirical analysis, as
the variables are standardized in regressions. To understand this magnitude, we know the monthly mutual
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Figure 1: Quantity (q̃k,t) time series plot
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Note: Time series of the constructed quantity (q̃k,t) variables for the Fama-French-Carhart factors. The
monthly observations span from January 2000 to December 2022.

Table 1: Summary statistics of quantity q̃k,t (unit: 10
−6)

Fama-French-Carhart factors Across 153 JKP factors

MKT SMB HML MOM Q25 Median Q75

Mean 0.29 0.04 0.13 -0.15 -0.05 -0.01 0.03

Std 1.88 0.29 0.65 0.82 0.23 0.39 0.76

Note: The mean and standard deviation of the constructed quantity time series q̃k,t for the Fama-French-
Carhart factors and JKP factors.

Table 1 presents the full-sample statistics of FF3C’s q̃ and summaries of these statistics across

the 153 JKP factors.

Examining the basic time series properties of q̃k,t, we find that variation dominates its

trend, making quantity fluctuation the primary feature compared to the secular trend in

retail flows. The series also exhibits dynamic volatility clustering, similar to that seen in

more familiar factor return time series.

fund flows are in the order of tens of billions of dollars, and the total market capitalization is in the order of
tens of trillions of dollars (see Appendix Figure A.1). So the first term in Eq. 8 is in the order of 10−3 (given
market β around 1). The last term, monthly v̂art(fk,t) is in the order of 10−3, so q̃ is in the order of 10−6.
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Among the four factors plotted in Figure 1, MKT’s quantity (in blue) has the most time-

series variation. The reason is that most stocks have positive market beta centered around

one, so q̃MKT,t roughly aggregates the overall retail flows into (and out of) the entire mutual

fund sector. In contrast, the three long-short factors have stock betas that are more evenly

distributed around zero, so their q̃k,t series reflect the net retail flows into (and out of) stocks

of particular investment styles. Therefore, these series are not mechanically correlated, even

though they are all constructed from the same retail flow panel data.

Appendix B.1 reports the pairwise correlations of the four qk,t series are far from ±1,

indicating that series are not collinear. It also reports a principal component analysis (PCA)

on the qk,t series for the 153 JKP factors. These series have a multi-factor structure with

independent variation along various dimensions and substantial idiosyncratic variation. This

result suggests each long-short factor’s quantity series offers valuable pricing information

beyond that of the market. It also means the results of BTQ’s predictive power further

below attained with different factors are not mechanically driven by repeated q variations

and suggests the robustness of the underlying economic mechanism.

Turning to notable spikes in the plot, we note q̃MKT,t experiences significant increases dur-

ing the Global Financial Crisis and the COVID-19 pandemic in the spring of 2020. These

spikes are attributed to significant outflows from mutual fund investors during these peri-

ods. As a result, the sophisticated investors’ risk holding quantity increases, making them

more “averse” to the market risk, which can be related to market crashes and subsequent

rebounds. However, this is a highly simplified and anecdotal explanation of the main eco-

nomic mechanism, as it does not consider cross-sectional variation in factor exposures, more

nuanced fluctuations, or factors beyond MKT. Next, we turn to formal empirical analysis.
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4 Empirical results

4.1 Security market line (SML) depends on quantity

The security market line is a simple and familiar tool to visualize the relationship between

systematic risk exposure and expected return (β-Er) in the cross section of stocks without

resorting to parametric modeling. We construct the empirical SML and the upgraded ver-

sions conditional on factor q. We show the β-Er relationship is nearly flat unconditionally,

which is consistent with the existing empirical results that factor exposure alone cannot ad-

equately explain the cross-sectional variation in stock returns. However, once conditional on

quantity information, the SML reveals interesting risk-return patterns that strongly support

a risk-based explanation.

The unconditional SML displays the β-Er relationship in the non-parametric regression

model: Et[ri,t+1] = Er(βi,k,t). We estimate it with a simple kernel method by sorting stock-

month observations into twenty quantile bins by β̂i,k,t, and then plotting the average of ri,t+1

against the average β̂i,k,t within each bin. Notice return ri,t+1 leads β̂i,k,t by one month, so

that it estimates conditional expected returns.

The upgraded SML conditional on quantity estimates the bi-variate non-parametric

model: Et[ri,t+1] = Er(βi,k,t, qk,t), and the purpose is to show the second entry, q, mat-

ters for the risk-return relationship. Again, we conduct a simple non-parametric estimation

for transparency and intuitiveness. The estimation procedure is the same as the uncondi-

tional SML, but we further split each bin of stock-month observations into two sub-bins by

the time-series median of qk,t, and plot sub-bin average ri,t+1 against average β̂i,k,t.
21

Figure 2 presents single-factor models using the Fama-French-Carhart factors (MKT,

SMB, HML, MOM), with black curves representing the unconditional SMLs, and red and

21Formally, an unconditional bin is defined as {(i, t) s.t. β̂i,k,t ∈ [a, b)}, where a and b are boundaries

of the 20 quantiles of β̂i,k,t, for example, the first pair is
[
quantile(β̂·,k,·, 0%), quantile(β̂·,k,·, 5%)

)
. A “high

q” bin is defined as {(i, t) s.t. β̂i,k,t ∈ [a, b) and qk,t ≥ median(qk,t)}, where median(qk,t) is the time-series
median of qk,t. And, “low q” is the same as “high q” but with “≥” replaced by “<”.
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Figure 2: Security market line (SML) conditioning on quantity: Et[ri,t+1] = Er(βi,k,t, qk,t)
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Note: Security market line (SML) plots expected stock returns against β. The unconditional SML (black):

sorts the stock-month observations into twenty quantile bins of β̂i,k,t and plots the average return ri,t+1

against average β̂i,k,t within each bin. The conditional SMLs (red for high q, blue for low q): the same

process but split bins by the time-series median of qk,t. Notice the x- and y-axis scales are two times larger

in the bottom two panels than in the top two to accommodate the greater ranges of HML and MOM β’s.

blue for conditional on high and low qk,t, respectively.

We find that the unconditional SML is nearly flat for the market factor, with a slight

downward slope in the higher beta range. This implies that the market beta alone cannot

explain the cross-sectional variation in expected returns, which is consistent with similar

reports in the existing literature. Similar null results for unconditional SMLs are observed

for SMB and MOM, while HML’s SML is slightly upward-sloping.
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In contrast, the conditional SMLs show interesting risk-return patterns that are not

observable without conditioning on q. The high-q SMLs (red) exhibit a strong positive slope,

while the low-q (blue) SMLs are downward sloping. The two conditional SMLs have distinct

slopes, and the unconditional SML (black) lies in between them as the mixed average. The

positive high-q slope means the cross-sectional risk-return tradeoff is strong and positive,

suggesting that sophisticated investors demand higher additional compensation for bearing

high systematic risk investments in high-q environments. The negative low-q slope indicates

a negative risk-return tradeoff, suggesting that investors are more willing to hold high-

risk investments when they are required to sell lots of such stocks to retail traders in low-q

months.22 The gaps in the slopes suggest that sophisticated investors’ risk-holding conditions

matter for their demand for risk, which significantly impacts the pricing of factor risks in

the cross section. Notice the four plots are produced with different qk,t time series and β̂i,k,t

panels, yet the slope patterns are consistent across factors, suggesting the quantity’s effects

on factor premiums is general and the underlying economic mechanism is robust.

The magnitude of q’s effects is economically massive. For instance, a market beta-neutral

stock has an expected return of around 0.75% per month unconditional on q. In contrast, for

a stock with a market beta of 1, the expected return is as high as 1.25% in high-q months or

0.25% in low-q months, with the average being still around 0.75%. The high v.s. low-q gap

is around 1% per month or more than 10% annualized. Such a gap is even greater for higher

market β stocks. For HML, the gap for a βHML = 1 stock is around 30% annualized, while

the HML-neutral stock’s expected return does not depend on q, shown by the crossing of the

three curves at βHML = 0. This result reveals that HML is a salient fundamental factor for

sophisticated investors, as both high β exposure and high quantity holdings are compensated

by significantly higher risk premiums. For the SMB factor, while the general patterns of SML

slopes remain consistent, the effects of both β and q are smaller in magnitude compared to

22The negative low-q slope is puzzling in the sense that it suggests a risk preference (rather than aversion)
in low-q months. The frictions regarding sophisticated investors’ risk management as described in Frazzini
and Pedersen (2014) can be a potential explanation, which is an interesting direction for future research.
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the other factors. We provide additional support for these findings and present more precise

point estimates using parametric estimations further below.23

All the SMLs are approximately straight lines, regardless of their slopes, particularly

around the central range of β, where most stocks are concentrated and sampling noise is

less pronounced. This linearity in β is consistent with the cross-sectional law of one price

(LOOP), although the slope (risk premium) can vary significantly with the q condition.

Next, we specify the linearity of expected returns in β, while still leaving the effect of q

non-parametric in an upgraded Fama-MacBeth regression framework.

4.2 Fama-MacBeth factor premium increases with quantity

We specify a linear relationship between factor exposure (β) and expected return, where

the linear coefficient (factor premium) is allowed to vary with quantity: Er(βi,k,t, qk,t) =

βi,k,tµk(qk,t).

To estimate this model, the first stage of the Fama-MacBeth regressions provides factor

risk exposures β̂k,i,t from time-series regression (already detailed in Section 3.1). The second

stage of the Fama-MacBeth regressions runs cross-sectional regression for each t:

ri,t+1 = γk,t+1β̂i,k,t + errori,t+1, ∀i, (10)

where γk,t+1 is the Fama-MacBeth factor mimicking portfolio (FMP) return. Canonically,

the factor premium is estimated as the time-series average of γk,t+1. It measures the average

cross-sectional association between factor loading and stock return. It is often cited as

evidence against factor pricing because the unconditional Fama-MacBeth factor premium is

close to zero (Lopez-Lira and Roussanov, 2020).

The innovation is that we estimate the mean of γk,t+1 conditional on qk,t. To this end, we

23It is also interesting to note that the crossings of the high/low-q and unconditional SMLs are at around
β = 0 for MKT and HML, but not for SMB and MOM. Crossing at β = 0 is consistent with the parametric
BTQ model and simpler to understand with the theoretical motivation: the expected return of a factor risk-
neutral stock should not be affected by that factor’s quantity fluctuations. Not crossing at β = 0 warrants
further investigation.
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Figure 3: Fama-MacBeth factor premium conditioning on quantity, µk(qk,t)
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Note: Fama-MacBeth factor mimicking portfolio returns (FMP, γk,t+1) averaged unconditionally (dashed
line) and averaged within unit bins of qk,t (solid line).

form four unit bins of qk,t (which is already standardized) and calculate the average of γk,t+1

in each bin. Figure 3 presents the conditional (solid lines) and the unconditional (dashed

lines) factor premiums for the four single-factor specifications.

The plot shows strong and consistent evidence that the Fama-MacBeth factor premium

is not zero but increasing in factor quantity qk,t. Specifically, the cross-sectional risk-return

relationship is strong and positive when quantity qk,t is high. And the factor premium

is negative when qk,t is low, suggesting that the risk-return tradeoff is reversed in low q
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environments. On average, the unconditional premium is close to zero, but this reflects only

a small part of the interesting big picture that unfolds only when we condition on quantity.

The increasing relationship in µk(qk,t) is consistent across the four factors, although the

market factor exhibits the most substantial variation. The market factor premium varies

from less than −2% per month when market qk,t is in the lowest (−2,−1) standard deviation

range to nearly +3% per month when market q is in the (1, 2) range. Consistent with the

SML results, the magnitude of factor premium fluctuation driven by qk,t can reach double-

digit annualized percentage points.

4.3 Beta times quantity (BTQ) forecasts individual stock returns

The empirical results so far with non-parametric plots show the quantity information signif-

icantly affects the cross-sectional risk-return relationship. Next, we turn to the parametric

BTQ model, which allows us to include multiple factors, provide more formal point esti-

mates, and conduct OOS model fit evaluation and factor selection tests. We show the BTQ

model provides a compelling explanation for the expected return of individual stocks.

Once factor premium function µk(qk,t) is specified as the linear form µk(qk,t) = λkqk,t, we

arrive at the parametric BTQ model, which is estimated as the following panel-wise return

predictive regression:

ri,t+1 =
K∑
k=1

λkqk,tβ̂i,k,t + errori,t+1, ∀i, t. (11)

We compare it with the “β-only” model, which is implied by a constant factor premium µk:

ri,t+1 =
K∑
k=1

µkβ̂i,k,t + errori,t+1, ∀i, t. (12)

We first present the results of the single-factor predictive regressions (K = 1) with k =

each of the four Fama-French-Carhart factors (MKT, SMB, HML, MOM) and the 153 JKP

factors (Table 2).
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Table 2: Predicting stock returns with and without quantity, single factor

Fama-French-Carhart factors Across 153 JKP factors

MKT SMB HML MOM Q25 Median Q75

Panel A: IS R2 comparison, full sample 2000-2022 (%)

BTQ 1.01 0.30 1.00 0.91 0.39 0.62 0.95

β-only 0.05 0.05 0.12 0.06 0.02 0.06 0.10

Panel B: OOS R2 comparison, evaluation window 2010-2022 (%)

BTQ 0.75 0.60 0.84 0.65 0.20 0.38 0.67

β-only 0.05 -0.10 0.15 0.02 -0.03 0.04 0.11

Panel C: full-sample coefficient comparison: 2000-2022

BTQ

λk 1.80 0.72 1.48 1.77 0.62 0.99 1.48

t-stat (4.18) (2.76) (3.52) (3.38) (2.24) (2.96) (3.69)

β-only

µk 0.38 0.31 0.56 -0.50 -0.33 -0.14 0.22

t-stat (1.07) (1.25) (1.71) (-1.23) (-1.52) (-0.71) (1.11)

Note: BTQ and β-only return predictions (Eq. 11 and 12), single-factor models (K = 1). The first four
columns repeat the same prediction exercises with k = MKT, SMB, HML, and MOM, respectively. The last
three columns report the summary statistics across the 153 JKP factors. The t-statistics (in parentheses) are
calculated using standard errors clustered by month. Return prediction R2 is calculated without demeaning
(R2 := 1−

∑
i,t (ri,t+1 − r̂i,t+1)

2
/
∑

i,t r
2
i,t+1, where r̂i,t+1 is predicted return) throughout the paper following

Gu, Kelly, and Xiu (2020).

The key finding is that the BTQ model significantly outperforms the β-only model in

predicting stock returns, with substantial R2 improvements across different factor choices

and in both in-sample and out-of-sample evaluations.24 Even with only one factor, the BTQ

model’s OOS return predictive R2’s are around 0.8% for MKT and HML, which are among

the ones with a high model fit in the 153 JKP factors. The median OOS R2 across the 153

JKP factors is around 0.4%, and 139 out of the 153 factors have an OOS R2 above 0. This

level of predictability is economically significant and comparable to unstructured machine

24For OOS evaluations, we estimate the model parameters (λk and µk) using the sample period from 2000
to 2009 and apply these estimates to calculate the OOS R2 for the period from 2010 to 2022.
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learning models that use a large number of firm characteristics to predict stock returns. The

state-of-the-art machine learning models typically achieve an OOS R2 of around 1% to 2%

in the literature. In contrast, the β-only models have a low R2 around 0, and 50 out of the

153 JKP factors have a negative OOS R2.

Turning to the coefficients estimates, the BTQ model’s λk are significantly positive for all

four Fama-French-Carhart factors and most of the 153 JKP factors. The economic magnitude

of the λk estimates is substantial. For example, λMKT = 1.8%, meaning for one standard

deviation increase in market factor q, the expected return of a stock with a market beta of

1 increases by 1.8% per month, or 1.8% × 2 = 3.6% per month for a stock with a market

beta of 2, so on and so forth. In contrast, the β-only model’s µk coefficients are mostly

statistically insignificant from zero, and 90 out of the 153 JKP factors even have negative

coefficient point estimates.

In summary, the single-factor results show the BTQ model already reliably predicts stock

returns, the coefficients are consistent with the risk-based explanation, and the β-only model

fails in both model fit and coefficient estimates.

In addition, Appendix Table A.1 presents an incidental empirical finding: each factor’s

return fk,t+1 is predictable by its quantity qk,t, with the predictive coefficients predominantly

positive and statistically significant. Additionally, the OOS R2’s are unstable and mostly

negative, due to the limited statistical power of the simple time-series prediction of factor

returns. As discussed in Section 2.2, while this time-series predictability is consistent with

the BTQ model’s cross-sectional return predictability, it is a much weaker result to argue for

quantity’s pricing power and peripheral to our research focus (more discussion in Appendix

B.2).

Moving onto multi-factor models, Table 3 presents the results for these models while

maintaining a relatively low dimensionality with K ≤ 6. This is achieved by using various

combinations of the Fama-French-Five-Carhart factors. The BTQ model still significantly

outperforms the β-only model in all multi-factor specifications. Allowing multiple factors
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Table 3: Predicting stock returns with and without quantity: multi-factor models

CAPM FF3 FF3C FF5 FF5C
K = 1 3 4 5 6

Panel A: IS R2 comparison, full sample 2000-2022 (%)

BTQ 1.01 1.17 1.19 1.17 1.21
β-only 0.05 0.17 0.21 0.18 0.22

Panel B: OOS R2 comparison, evaluation window 2010-2022 (%)

BTQ 0.75 1.03 1.07 0.44 0.65
β-only 0.05 0.15 0.22 -0.26 -0.05

Panel C: coefficients, full sample 2000-2022

BTQ, λk (%) and t-statistics in parentheses

MKT 1.80 1.27 1.15 1.28 1.16
(4.18) (2.08) (1.96) (2.00) (1.98)

SMB -0.23 -0.16 -0.20 -0.10
(-0.77) (-0.59) (-0.69) (-0.38)

HML 0.82 0.50 0.80 0.50
(1.43) (0.70) (1.55) (0.73)

MOM 0.53 0.74
(0.71) (0.93)

CMA 0.10 0.08
(0.35) (0.28)

RMW -0.09 -0.25
(-0.28) (-0.68)

β-only
— see Appendix Table A.2 —

Note: BTQ and β-only return predictions (Eq. 11 and 12). Same as Table 2 but with multi-factor models
(K ≥ 1). The coefficients of the β-only model are relegated to Appendix Table A.2.

further boosts BTQ’s predictive accuracy with the best OOS R2 values reaching above 1%.

In contrast, the β-only model still barely predicts stock returns with low R2 values even in

sample.

In terms of factor importance, controlling for other factors’ contributions, MKT is the

most prominent with the highest and most statistically significant coefficients across all

multi-factor models, even though λMKT attenuates when more factors are included. HML

and MOM also have positive coefficients but are statistically insignificant. When these
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factors are added to the model, both IS and OOS R2 increase, indicating that their BTQ

terms provide additional predictive power, and that they are priced factors. SMB, CMA, and

RMW’s coefficients are near zero or negative, indicating they are not priced factors according

to the BTQ model. This is also consistent with the fact that the OOS R2 drops when adding

these factors to the model. The β-only model’s µ coefficients are all insignificant from zero

or negative. (These numbers are relegated to Appendix Table A.2.)

Comparing BTQ’s IS v.s. OOS model fits, we see slight reductions in R2 when moving

from IS to OOS for CAPM, FF3, and FF3C. This indicates mild overfitting or parameter

instability issues. It underscores the robustness of the BTQ model’s predictive power, es-

pecially considering the inherent difficulty of forecasting monthly stock returns due to the

low signal-to-noise ratio in stock prices. When moving to FF5 and FF5C, the IS R2 keeps

increasing slightly, while the OOS R2 reverses to lower values of 0.5% and 0.7%. These levels

of prediction accuracy are still economically significant, but the gap between IS and OOS

R2 indicates an overfitting issue. It suggests the ordinary least squares (OLS) estimation

method has limitations for moderately higher-dimensional BTQ models. The additional fac-

tors might be noisy or redundant and introduce sample estimation errors. Next, we adopt a

regularization method to select factors from a much greater number of candidates.

4.4 Taming the factor zoo with BTQ

The proliferation of proposed factors challenges the asset pricing literature, and the BTQ

model offers a new method to select factors. This method has stronger identification power

and economic relevance than traditional factor premium tests.

To implement it, we use the same return prediction framework (Eq. 11) but overload it

with a large number of proposed factors (K = 159, including six from FF5C and 153 from

JKP). It is well expected that many of these factors are noisy or redundant when controlling

for other factors for pricing stock returns. Therefore, we use the Lasso method to induce

sparsity in the predictive model and filter out the factors that are not priced according to
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the BTQ model.

Lasso is a regularization method that adds a penalty term to the OLS objective function

to shrink and threshold the coefficients towards zero. Specifically, the parameter estimates

solve the following optimization problem:

min
λ1...λK

1

2|IS|
∑
i,t∈IS

(
ri,t+1 −

K∑
k=1

λkβ̂i,k,tqk,t

)2

+ ω
K∑
k=1

1

σ(q̃k,t)
|λk| , (13)

where |IS| is the number of stock-month observations in the training sample, and ω is the

regularization parameter that controls the strength of the penalty term.25

Figure 4 plots the model fit and factor selection results for the BTQ and β-only models

as the regularization parameter (ω) varies. (The β-only model’s Lasso implementation is

similar; see technical details in Appendix A.2.) As ω increases, the fitted BTQ model

becomes more parsimonious, as shown by the decreasing IS R2 (Panel A blue curve) and

the decreasing number of selected factors (those with non-zero λk in Panel C). This is the

expected behavior of the Lasso method. More importantly, the OOS R2 (Panel A red curve)

displays a hump shape, with a broad and relatively stable peak that reaches around 1.0%.

This suggests that the BTQ model’s predictive power is strong and robust to the choice of

ω. In contrast, the β-only model’s OOS R2 never exceeds 0.3% and is only positive in a

smaller range of ω values. This comparison once again highlights that quantity is essential

for a risk-based explanation of expected stock returns.

The most important use of the BTQ + Lasso setup is a new way to investigate which

factors are important for pricing stock returns. We find that only a few factors out of the

factor zoo are sufficient for the models’ high predictive power. The selected factors (those

with non-zero λk when OOS R2 peaks) are colored in Panel C. We find MKT is the first

and most important factor, consistent with the observations in previous sections (4.1 to 4.3).

25The penalty on λk is normalized by the standard deviation of q̃k,t, so that the regularization is “fair”
across different factors whose quantity q̃k,t have different scales of fluctuations before standardization (qk,t =
q̃k,t/σ(q̃k,t)). See technical details in Appendix A.2.

30



Figure 4: Return prediction with factor selection from the factor zoo

(A) BTQ, R2
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(B) β-only, R2
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(C) BTQ, factor selection

10
-9

10
-8

10
-7

-1.5

-1

-0.5

0

0.5

1

1.5

(D) β-only, factor selection
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Note: Model fit and parameter estimates as the regularization parameter (ω, horizontal axis) varies. In
Panels A and B, the IS R2 is evaluated in the training window (2000-2009), and the OOS R2 is the same
model evaluated in the testing window (2010-2022). Panels C and D plot the parameter estimates from
the training window, which are also brought out of the sample for evaluating the OOS R2 in Panels A and
B. The selected factors (colored curves) are, for BTQ: market (mkt), betting against beta (betabab 126d),
return volatility (rvol 21d), idiosyncratic volatility from HXZ q-factor model (ivol hxz4 21d), and book-
to-market enterprise value (bev mev); and for β-only, percent operating accruals (oaccuruals ni). The
unselected factors are in gray, reported in Appendix B.4 with factor importance measures. The vertical
black line indicates the tuned ω based on cross-validation; see Appendix A.2 for details.

The MKT factor is central to multi-factor pricing theory such as Merton’s (1973) ICAPM

model, and is historically the most important factor in workhorse empirical models such

as the CAPM and Fama French. However, some research casts doubt on whether market
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beta is indeed related to expected returns (Black, 1972; Black, Jensen, and Scholes, 1972;

Frazzini and Pedersen, 2014). Our results show that the market factor equipped with quantity

variation is still very effective for explaining expected stock returns. However, this conclusion

cannot be achieved with β-only models.

The other selected factors include three based on technical information, betting against

beta, return volatility, and idiosyncratic volatility from Hou, Xue, and Zhang’s (2015) q-

factor model, and one based on fundamental information, book-to-market enterprise value

(which is a variant of the HML factor). These are among the usual suspects in the literature,

while our results reinforce their importance when considering quantity. On the other hand,

SMB and other factors related to size are dismissed by the Lasso selection. The unselected

factors are in gray, reported in Appendix B.4 with factor importance measures.

Moreover, notice that the λ estimates of these selected factors from the BTQ model are

all positive, which is consistent with the risk-based explanation as discussed in Section 2.2.

The β-only model only selects one factor, percent operating accruals (Panel D). It has a

negative coefficient, which is inconsistent with the risk-based explanation. We believe this

is not a reliable result in a misspecified model, as indicated by β-only’s low model fit.

Additionally, choosing ω based on the OOS R2 peak is sufficient for the purpose of

interpreting the BTQ model’s factor selection. However, for the purpose of forecasting

stock returns, it has a look-ahead bias. To overcome the problem, we provide the tuned ω

using only IS information via ten-fold cross-validation, shown as the vertical black line (see

technical details in Appendix A.2). The IS tuned ω is close to the OOS R2 peak, suggesting

the robustness of prediction and selection results.

4.5 BTQ with latent factors

Latent factors estimated using statistical methods to fit the realized time-series variation of

returns have shown superior explanatory power for expected returns.26 We demonstrate the

26See, e.g., Kelly, Pruitt, and Su (2019), Kozak, Nagel, and Santosh (2020), and Lettau and Pelger (2020).
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BTQ framework can be applied to latent factors as well, and it leads to a strong two-factor

structure with high predictive power for stock returns that is unattainable with the β-only

counterpart.

We extract the principal components (PC) of the factor zoo portfolio returns, which are

the linear combinations of the factor returns that capture the most time-series variation.27

Then, we construct β̂ and, in turn, quantity q with respect to each of these PC factors from

scratch following the same procedure reported in Section 3. Based on these variables, we

conduct the same BTQ predictive regression with Lasso as in the previous section. The new

set of β̂ and q variables provides some external validation of our method’s robustness and

generalizability.

Figure 5 shows that the BTQ model with PC factors has strong predictive power for

stock returns, with the OOS R2 peaking at around 1.0%, similar to the previous Figure 4

with the original factors. The high OOS R2 is, once again, robust to the choice of ω, shown

with the broad peak of the OOS R2 hump-shaped curve. In contrast, the β-only model with

PC factors hardly delivers any predictive power, with the OOS R2 less than 0 for almost all

ω values.

More importantly, Panel C shows a strong two-factor structure, with PC1 and PC2

selected as the most important factors for predicting stock returns. The magnitude of their

λ estimates dominates the subsequent PC factors (gray curves). This parsimonious structure

attained with the BTQ model with latent factors can explain expected stock returns well

with high OOS R2. This is consistent with the literature that suggests latent factors are

helpful in “shrinking the cross section” and reducing the dimensionality of the factor zoo

(Kozak, Nagel, and Santosh, 2020).

Notice, once again, the signs of the λ estimates for the selected factors, PC1 and PC2, are

both positive. This is required by the risk-based theory no matter how the signs of the PCs

are specified. In contrast, the β-only model’s selection and parameter estimates do not show

27Specifically, we use the first 50 principal components estimated from the monthly returns of the FF5C
and 153 JKP factors from 1970 to 2009.
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Figure 5: Return prediction with PC and factor selection

(A) BTQ, R2
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(B) β-only, R2
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(C) BTQ, factor selection
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(D) β-only, factor selection
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Note: Model fit and parameter estimates as the regularization parameter (ω, horizontal axis) varies. In
Panels A and B, the IS R2 is evaluated in the training window (2000-2009), and the OOS R2 is the same
models evaluated in the testing window (2010-2022). Panels C and D plot the parameter estimates from the
training window, which are also brought out of the sample for evaluating the OOS R2 in Panels A and B.
We perform Lasso regression using the first 50 principal components derived from the monthly returns of
the FF5C and JKP factors from 1970 to 2009. The unselected factors are in gray. The vertical black line
indicates the tuned ω based on ten-fold cross-validation; see Appendix A.2 for tuning details.

a discernible pattern, which we believe are mostly estimation noise given that the β-only

model is misspecified.
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4.6 Robustness

This section reports robustness checks that validate the predictive power of the BTQ model

reported above. We have already shown the BTQ model is robust to different factor speci-

fications, including single-factor, multi-factor, selected factors, and latent factors extracted

from the factor zoo. We further change the specifications in different dimensions, including

various sub-sample evaluations and alternative constructions of the quantity variable.

First, we evaluate the forecasts of the BTQ models reported above in different size and

time sub-samples. Table 4 Panel A breaks down the OOS panel into five size groups according

to NYSE market capitalization quintiles and reports the OOS R2 in each size group. Panel

B similarly breaks down the OOS evaluation into three sub-periods: 2010-2014, 2015-2018,

and 2019-2022. Panel C reports the original joint OOS (2010-2022) evaluation for reference.

This table evaluates the BTQ models with factors selected from the factor zoo (initially

reported in Section 4.4) and with selected PC factors (in Section 4.5).28 Appendix B.5

contains the same sub-sample robustness evaluations for the Fama-French-Carhart factors

(in Section 4.3), and the results are mostly the same.

Table 4 shows the BTQ model’s predictive results reported above are consistent in most

size and time sub-samples. In particular, Panel A shows the accuracy is higher in large stocks,

which is usually the most challenging section for stock return prediction. Characteristics-

based anomalies and machine learning models typically find stronger predictive power in

the small groups due to stronger limits to arbitrage in small stocks, including illiquidity

and information asymmetry. This result indicates that BTQ’s predictive power can be more

reliably implemented in investment strategies in practice, given liquidity costs and trading

constraints are typically weaker for larger stocks.29

Regarding sub-periods, the BTQ model’s predictive power is mostly stable over time.

The first and the last sub-periods (2010-2014 and 2019-2022) have higher R2 values than the

28Table 4 evaluates the OOS forecasts (r̂i,t+1) produced with the in-sample cross-validated hyperparameter
ω. That is, Panel C reports the same OOS R2 values at the vertical black line in Figures 4 and 5 Panel A.

29Cf. Jensen, Kelly, Malamud, and Pedersen (2024); Goyenko, Kelly, Moskowitz, Su, and Zhang (2024).
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Table 4: BTQ OOS prediction accuracy (R2 in %) in size and time sub-samples

evaluation sample # of obs. selection PC+selection

Panel A: size group evaluation

1 (small) 323,617 0.46 0.44

2 165,059 1.12 1.07

3 141,153 1.48 1.40

4 115,763 2.02 1.91

5 (big) 103,927 2.16 2.09

Panel B: sub-period evaluation

2010-2014 321,425 1.16 1.18

2015-2018 255,959 0.15 0.14

2019-2022 272,135 1.00 0.92

Panel C: original benchmark OOS evaluation

OOS (2010-2022) 849,519 0.81 0.77

Note: OOS R2 evaluated in different size and time sub-samples for the BTQ models with factors selected
from the factor zoo (in Section 4.4) and with selected PC factors (in Section 4.5). Panel A breaks down the
OOS panel into five size groups according to NYSE market capitalization quintiles and reports the OOS R2

in each size group. Panel B breaks down the OOS evaluation into three sub-periods: 2010-2014, 2015-2018,
and 2019-2022. Panel C reports the original joint OOS (2010-2022) evaluation for reference.

middle sub-period (2015-2018) in both model specifications. We attribute this to the fact

that quantity fluctuations in the middle sub-period are less volatile, as shown in Figure 1.30

Second, we evaluate the robustness of the BTQ model to alternative specifications in

constructing the quantity time series qk,t. In particular, there is no explicit theoretical

guidance on whether factor-level flows have immediate or lagged effects on factor premium,

or how fast past flows’ effects decay. The benchmark specification of the quantity variables

(in Section 3) accumulates past flows in a six-month lookback window, which aligns with

the common expectation. We now change the specification by constructing the quantity

30Notice for each model specification, the predictive model is trained once with the 2000-2009 training
sample (IS). Repeated size group-specific training (a.k.a. expert models) and rolling-window training have
the potential to further improve the R2 in OOS sub-samples above. We leave these extensions for future
research due to their focus on forecasting engineering.
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Table 5: BTQ OOS R2 (%) robustness to lookback window length in qk,t construction

lookback (h) selection PC+selection

1 0.36 0

2 0.41 0.42

3 0.65 -0.15

4 0.49 0.38

5 0.85 0.82

6 (benchmark) 0.81 0.77

lookback (h) selection PC+selection

7 0.78 0.88

8 0.62 0.70

9 0.62 0.10

10 0.33 0.11

11 0.48 0.19

12 0.48 0.25

Note: OOS R2 evaluated for BTQ models with qk,t constructed with alternative lookback window lengths
(h) using factors selected from the factor zoo (in Section 4.4) and selected PC factors (in Section 4.5).

variables using lookback windows ranging from 1 to 12 months. That is, in Eq. 9, h = 6 is

replaced by h = 1 to h = 12. The same empirical analyses from the previous sections are

re-run with these alternative quantity variables.

Table 5 shows the BTQ model’s predictive accuracy is robust to alternative lookback

window lengths in constructing the quantity variables. Certain perturbations (such as h = 5

or 7) can even improve the R2, meaning the benchmark results are not sensitive to the exact

specification of the quantity variable. Having an h that is too short or too long will hurt the

predictive performance, but the OOS R2 values are mostly significant and positive, especially

for the method that directly selects factors from the factor zoo.

Additionally, Table 5 offers suggestive evidence of the speed and persistence with which

factor flows influence sophisticated investors’ pricing of factor risks. Flow shocks likely have

an immediate impact on the factor premium next month, given that h = 1 already has some

predictive power. The R2 is higher with an intermediate window (h = 5, 6, or 7), suggesting

the lagged flows in the recent few months also have impacts on factor premium, and that

accumulating flows in a lookback window has, at least, statistical benefits in smoothing the

predictors. On the other hand, longer windows near one year suppress prediction accuracy,

suggesting that flows older than seven months have attenuated impacts on factor premiums.

The attenuation is likely related to mechanisms through which sophisticated investors can
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gradually unwind their absorbed positions and adjust their risk holdings over time. A more

detailed investigation of the dynamics between factor flows and factor premiums is left for

future research, which likely requires models and data more focused on investor holdings.

5 “Quantity-only” models do not explain expected returns either

This paper emphasizes a risk-based explanation of expected stock returns that incorporates

quantity information. Is the risk modeling essential, or can quantity information alone

explain expected stock returns? We now examine an alternative economic model in which

stock-level flow and quantity variations directly affect the expected stock returns without

considering the risk factors and the arbitrage pricing condition. This exercise is important

for understanding the joint economic roles of quantity and risk in asset pricing. So far,

the analyses above have focused on comparing benchmark model BTQ against the “β-only”

baseline that accounts for risk but not quantity. This exercise introduces an alternative

baseline: solely using quantity without considering risk also falls short by far in explaining

expected stock returns.

In the benchmark model (BTQ), stock-level quantity variations are first aggregated to

the factor-level quantities, which affect factor premium, and then feed back to stock-level

expected returns. The “quantity-only” alternative model specifies that stock-level flows and

quantity variations directly affect expected stock returns, short-circuiting the factor premium

mechanism (see the comparison in Figure 6). Specifically, the alternative model is

Etri,t+1 =
(
µstock
i

)
+ λstock

i qstocki,t , ∀i, t, (14)

where qstocki,t is a stock-specific flow or quantity measure, and λstock is the sensitivity coefficient

of stock returns to qstocki,t . (λstock
i may or may not vary across stocks, to be specified below.

µstock
i is specified as 0 and omitted since we focus on the dynamic effects of quantity.)

This “quantity-only” model implies a very different economic mechanism, although (14)
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Figure 6: Comparison of predictive architectures of the two models
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Note: A. BTQ model: stock-level quantity variations affects expected stock return via quantities of fac-
tor risks and factor premiums. B. “quantity-only” alternative model: stock-level quantity directly affects
expected stock return, short-circuiting the factor premium mechanism.

is similar in form to the main model’s factor premium specification (3). In the main model,

factor premiums dynamically vary, yet the cross-sectional no-(statistical) arbitrage pricing

condition (with respect to the factors) holds each period. In contrast, the alternative model

dispenses with the APT condition. Suppose two stocks have the same risk exposure but

have received different noise flow shocks, the alternative model would imply an immediate

cross-sectional arbitrage opportunity. It implies an inability of cross-sectional substitution,

such that each stock is independently priced regardless of their factor exposures. This might

be the case if rigid frictions prevent cross-sectional arbitrage, or if the stocks’ idiosyncratic

risks are not diversifiable and treated as individually priced risks.

Another way to look at the specification (14) is a quantity-driven alpha model when

viewed in conjunction with the BTQ model: Etri,t+1 = λstock
i qstocki,t +

∑
k λkβi,k,tqk,t. In this

view, the term λstock
i qstocki,t captures dynamic alpha, the part of quantity-driven expected stock

return that is not explained by the risk channel (BTQ, or the second term).

To empirically implement the alternative model, we experiment with various specifica-

tions of (14) and find none of them even come close to the BTQ model’s explanatory power

for expected stock returns. Specifically, we normalize the dollar stock-level mutual fund flow

(flowstock
i,t , see Eq. 7) by the stock’s one-month-lagged market capitalization, following the
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conventions in estimating asset demand elasticities. We accumulate past flows over various

lookback windows, since we are agnostic about whether flow shocks have immediate or lagged

effects on expected returns:

qstock,hi,t :=
1

h

h−1∑
h′=0

flowstock
i,t−h′

market capi,t−1−h′
, ∀i, t, and h = 1, . . . , 12. (15)

The construction is similar to that of the factor-level quantity variables in Eq. 9 but at the

stock level.

We explore the predictive power of qstock,hi,t for stock returns, and compare it with the

BTQ model’s predictive power. We experiment with different specifications of the sensitivity

coefficient λstock, varying the degrees of parameter freedom. First, we specify it as a constant

for all stocks: ri,t+1 = λstockqstock,hi,t + errori,t+1 (results reported in Table 6 Panel A). Second,

we allow a size-dependent sensitivity coefficient such that λstock is indexed by the NYSE size

quintile of the stock: ri,t+1 = λstock
size quintile(i,t)q

stock,h
i,t + errori,t+1 (in Panel B). Lastly, we allow

stock-specific λstock
i , which is the most flexible specification: ri,t+1 = λstock

i qstock,hi,t + errori,t+1

(in Panel C).31

Consistent across all specifications, the “quantity-only” models are very weak and un-

reliable in predicting stock returns. In Table 6 Panel A, the constant λstock specification’s

in-sample R2 values are about 100 times smaller than the BTQ model’s. The out-of-sample

R2 values are not only equally small, but also negative in some specifications of the lookback

length (h). Allowing size-dependent λstock brings a very slight improvement in these pre-

dictive power evaluations, but no qualitative changes (Panel B). The low R2 values suggest

that these two specifications are too restrictive, and the model is underfitting the data. In

Panel C, stock-specific λstock
i allows a much greater degree of freedom in parameterization

(thousands of stocks v.s. one or five parameters). The in-sample R2 mechanically increases

31The second specification (size-dependent λstock) effectively runs five separate univariate predictive re-
gressions, one for each size bin. The third specification (stock-specific λstock

i ) effectively runs stock-by-stock
time-series predictive regressions. To address the unbalanced panel, we restrict the analysis to stocks with
more than 80% of monthly observations available in both the in-sample and out-of-sample windows. Stocks
with fewer observations would be even more challenging to forecast.
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Table 6: “Quantity-only” alternative model does not forecast stock returns

A. constant λstock B. λstock by size quintile C. λstock
i by stock

h IS R2(%) OOS R2(%) λstock t-stat IS R2(%) OOS R2(%) IS R2(%) OOS R2(%)

1 0.000 0.000 -0.10 -0.27 0.003 -0.001 0.47 -232

2 0.000 -0.001 0.05 0.12 0.002 -0.003 0.44 -215

3 0.000 0.000 0.17 0.29 0.003 0.000 0.39 -155

4 0.000 -0.001 0.20 0.33 0.004 -0.002 0.39 -156

5 0.003 0.001 0.51 0.75 0.006 0.002 0.41 -150

6 0.005 0.006 0.75 1.01 0.007 0.006 0.41 -107

7 0.006 0.008 0.82 1.12 0.008 0.008 0.41 -107

8 0.003 0.003 0.66 0.87 0.006 0.005 0.37 -142

9 0.004 0.004 0.75 0.99 0.006 0.006 0.38 -96

10 0.003 0.000 0.69 0.96 0.006 0.003 0.38 -101

11 0.003 -0.003 0.73 0.95 0.006 0.000 0.38 -98

12 0.003 -0.007 0.77 1.01 0.006 -0.004 0.38 -81

Note: Panel A: univariate predictive regression, ri,t+1 = λstockqstock,hi,t + errori,t+1. B: size-dependent pre-

dictive regression, ri,t+1 = λstock
size quintile(i,t)q

stock,h
i,t + errori,t+1, where λstock

size quintile(i,t) is indexed by the NYSE

size quintile of the stock. C: stock-specific predictive regression, ri,t+1 = λstock
i qstock,hi,t + errori,t+1. The R2

values are expressed as percentages, e.g., 0.005 in row 6 means 0.005%, a very small value.

but is still smaller than the BTQ model’s. More importantly, the out-of-sample R2 val-

ues are extremely negative, suggesting the in-sample R2 values are greatly exaggerated by

overfitting.

The constant predictive coefficient λstock estimates are mostly positive, but none is statis-

tically significant. The positive sign is consistent with our expectations based on the existing

literature. Recall that a positive flowstock
i,t means net outflow from noise traders, so the pos-

itive sign of λstock indicates a positive expected return response after sophisticated investors

absorb flows (or, equivalently, a negative concurrent price impact as in Gabaix and Koijen,

2022). Since we have normalized flowstock
i,t in constructing the qstocki,t predictors, the λstock co-

efficient is comparable to the (inverse) demand elasticities of stocks to flows, typically defined

as (∆P/P )/(∆Q/Q), where ∆Q/Q is the percentage change in the security’s quantity. The
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magnitude of λstock stabilizes between 0.5 and 0.8 for larger h values, which is close to the

elasticity estimates in the literature.32 Nonetheless, the λstock estimates are not statistically

significant, and the predictive power is too weak to offer a meaningful explanation of stock

returns.

The poor performance of this alternative model underscores the predictive power of the

BTQ model, which is greater by orders of magnitude and much more robust to specification

perturbations. It shows the empirical success of the BTQ model is not driven by quantity

per se, once again highlighting the paper’s core argument that quantity and risk should

work together to explain expected stock returns. In particular, the comparison implies that

the factor structure is still essential in modeling expected stock returns. This is consistent

with the view that statistical arbitrage activities by some sophisticated investors are effective

in determining the cross section of expected returns, even in the presence of noise traders

(Kozak, Nagel, and Santosh, 2018).

From a statistical/machine learning perspective, we can view both the BTQ and the

“quantity-only” alternative as prediction models of the cross section of returns based on

the stock-level quantity information, i.e., they use the same predictors to predict the same

targets. The difference is that the BTQ model conducts a dimension reduction on the pre-

dictors and, in turn, uses the reduced predictors to predict the cross section. This is an

encoder-decoder architecture in machine learning terms, where the low-dimensional “code”

is the factor-level quantities (see Figure 6 Panel A for encoder-decoder illustration). In this

perspective, BTQ performs well in forecasting because encoding reduces the noise in the

predictors and captures the economically meaningful quantity variation aggregated at the

factor level. On the other hand, the “quantity-only” model is limited by the noisy predictor

inputs at the stock level. See Gu, Kelly, and Xiu (2021) and Kelly, Malamud, and Pedersen

(2023) for applications of encoder-decoder structures in asset pricing. However, BTQ speci-

32The literature typically runs a concurrent regression of price on quantity using appropriate demand
instruments, whereas we run a predictive regression. Despite this difference, our estimated λstock is similar
in magnitude to the literature’s micro-elasticity around 1, as summarized in Table 1 of Gabaix and Koijen
(2022).
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fies both the encoding and decoding weights as the factor risk exposure (β) according to the

economic theory, rather than estimating them solely based on statistics.

6 Conclusion

This paper considers a new but important aspect of risk’s economic role in determining

asset prices—the quantity variation in investors’ risk holdings induced by trading flows. The

economic rationale is simple: when sophisticated investors hold more of a systematic risk

factor, they require greater compensation for bearing that risk, which in turn drives the

expected return of every stock exposed to the factor. Yet the empirical model yields a

compelling risk-based explanation for expected stock returns.

We show that incorporating quantity into canonical factor pricing has important im-

plications for asset pricing studies in three main aspects of new findings. First, quantity

variation elicits risk-return tradeoff relationships, which have been hard to capture with β

only and cast doubt on whether risk is the main driver of expected returns. We find the

cross-sectional relationship between factor exposures and expected returns (β-Er relation-

ship) strongly depends on factor quantity variation, and the previous null result is a mixed

average unconditional on quantity. Second, quantity enables a risk-based predictive model

(termed beta times quantity, BTQ) for monthly stock returns. The model delivers high

prediction accuracy in this hard empirical task dominated by unstructured machine learning

models and firm characteristics. Third, incorporating quantity provides a new way for factor

selection and, thereby, new answers to the factor zoo problem. Instrumenting factor premi-

ums with quantity variation has not only greater identification power but also more economic

relevance than traditional factor premium tests. We find that a few factors out of the factor

zoo are selected for the model’s high predictive power, and in a latent factor setting, the first

two principal components overwhelmingly dominate the remaining components.

Besides showing the improvements against the β-only baseline, we also implement various

versions of the “quantity-only” model, which directly relates stock-level quantity to expected
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stock returns. We find this alternative baseline also falls short by far in explaining expected

stock returns. This result implies stock returns’ factor structure and the no-arbitrage pricing

condition are important for modeling expected returns, even in the presence of significant

price impacts from noise flows.

This paper fits into the general agenda of using market trading and investor holding

quantity data to better model investors’ demand for risk and the resulting implication for

asset prices. We provide a simple and actionable way to incorporate quantity into workhorse

asset pricing models, including the security market line, Fama-MacBeth regressions, predict-

ing stock returns, and factor selection. We are confident that future research can similarly

incorporate quantity information into other existing asset pricing methods to yield new in-

sights for various research questions. Another interesting direction for further research is to

explore a richer set of asset holdings information to construct quantity variables. A concur-

rent paper (Gabaix, Koijen, Richmond, and Yogo, 2023) is highly relevant to this purpose;

the method proposed therein can help avoid a potential “quantity zoo” problem.
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Appendix

A Technical details

A.1 Construction and cleaning of mutual fund flows

In this appendix, we present details related to constructing and cleaning mutual fund flows.

Our primary data source is the CRSP Survivorship-Bias-Free Mutual Fund database.

We start with all funds’ return and total net assets (TNA) data at the share-class level. A

mutual fund may include multiple share classes. We first drop observations with no valid

CRSP identifier, crsp fundno. A few fund-share classes report multiple TNAs in a given

month. These are likely data duplicates, so we keep only the first observation of the month.

In what follows, we discuss the cleaning steps for returns and TNA at the share-class level.

After cleaning, we aggregate the share-class level data to the fund level.

A.1.1 Return cleaning

We first correct data errors in monthly net returns, mret.

First, we address extremely positive returns. We study the case in which a particular

fund share has returns greater than 100% and has existed for more than one year.33 We

manually check the entire time series of each share class in this subsample. Most of these

extreme returns reflect misplaced decimal points, which confound returns in decimal and

percentage formats. For these cases, we divide the faulty returns by 100.

Second, we address extreme negative returns. Similarly, we study the case in which

a particular fund share has existed for more than one year and has returns lower than

−50%. With extremely negative returns, we need to distinguish data errors from significantly

negative returns before a fund’s closure. Thus, we manually check only the subsample of

33We use the one-year threshold because mutual fund return and TNA during the first year are sometimes
inaccurate in the CRSP database. For example, return and TNA can be stale or reported using a placeholder
number such as 0.1. We address these issues by cross-checking with the alternative database.
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negative returns that occur at least one year prior to the last observation of a closed fund. We

manually check whether these extreme returns reflect data-input errors for this subsample.

For the cases with misplaced decimal points, we divide the faulty returns by 100.

A.1.2 TNA cleaning

Unlike many prior studies that construct percentage mutual fund flows, we study dollar-value

flows to preserve the cross-sectional relative magnitudes. The mutual fund size distribution

features a very long right tail. Winsorizing the extreme dollar-value TNA likely removes

both valid large values and input errors, generating significant bias. We devise an algorithm

to identify and correct erroneous observations of TNA:

1. Using the sample with corrected returns, we calculate dollar flows as in Eq. 6 at the

share-class level.

2. We study the top and bottom 0.5% of all dollar flows.34 We manually check this

subsample’s TNA time series of all share classes. We identify several common errors:

• Misplaced decimal points (usually by hundredths or thousandths).

• Stale TNA observations from CRSP, typically when a fund reorganizes its share

class offering (e.g., adding a new share class and moving assets into a single share

class).

• CRSP sometimes sets TNA = 0.1 for the first few months of a new fund or a new

share class.

We correct the misplaced decimal issue. For funds suffering from the latter two

problems, we obtain their TNA from Morningstar.35 Morningstar’s TNA data

(Net Assets ShareClass Monthly) suffer to a lesser extent from these issues than

34The choice of the top and bottom 0.5% is motivated by the distribution of dollar flows, where most
extreme values tend to occur at these tails.

35We merge the CRSP and Morningstar databases using a fund’s ticker.
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CRSP’s TNA data. We conclude by further cross-checking other third-party vendors

(e.g., Yahoo Finance and Bloomberg Terminal). Hence, whenever a fund’s CRSP TNA

deviates more than 50% from its Morningstar TNA, we use the Morningstar TNA.

3. We repeat the previous steps one more time to ensure that we have accounted for most,

if not all, extreme errors.

4. We compare our cleaned TNA with total assets (assets) from Thomson/Refinitiv

Holdings data.36 Following Coval and Stafford (2007) and Lou (2012), we drop obser-

vations whenever our cleaned TNA deviate more than 50% from assets from Thom-

son/Refinitiv.

Using cleaned return and TNA data, we calculate dollar flows at the share-class level using

equation (6). We obtain a fund’s flows by adding up the flows of all share classes in the same

fund. The final sample contains 1,707,742 fund×month observations.

A.1.3 Cross-validating the data-cleaning procedure

We cross-validate our data-cleaning procedure by comparing our aggregated mutual fund

flows with alternative sources. We compute the quarterly aggregate flows in dollar amounts

from our main sample and compare them with data from the Investment Company Institute

(ICI) and the Flow of Funds (FoF).

The ICI publishes aggregate monthly mutual fund flows, from which we extract quarterly

data spanning from 2007 to 2022. Specifically, we use the ICI’s Total Equity mutual fund

flows, which align closely with the coverage of mutual funds in our sample. Additionally,

we draw on data from the Federal Reserve Board’s Financial Accounts of the United States

– Z.1 (formerly known as the Flow of Funds or FoF) from the same time period, providing

quarterly observations. For our analysis, we focus on mutual fund flows (Line 28) within

Corporate Equities (Table 223) and use unadjusted flows (FU).

36We merge the two databases via the linking table MFLINKS, which WRDS provides.
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Figure A.1: Time series of aggregate mutual fund flows from various sources
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Note: The figure plots the quarterly time series of our measure, ICI flows, and Flow of Funds (FoF) flows.

Figure A.1 plots the quarterly time series of aggregate mutual fund flows from all three

sources. Our measure of aggregate mutual fund flows is broadly consistent with the other

two sources. The correlation between our aggregate flow measure and ICI flow is 0.63, while

the correlation between our measure and FoF flow is 0.47.

The differences observed in Figure A.1 among the three measures likely reflect variations

in mutual fund coverage. Specifically, the ICI flow tracks virtually all U.S. equity mutual

funds that invest in both domestic and world equity markets.37 The FoF flow, sourced from

unpublished ICI data, aggregates unadjusted flows into and out of all U.S. mutual funds

(including variable annuity long-term mutual funds). It is calculated based on mutual fund

assets in common stock, preferred stock, and rights and warrants.38 In comparison, our

mutual fund sample contains U.S. mutual funds covered by CRSP, which collects historical

data from various sources.39 Due to the nature of the data collection process, CRSP’s

37The ICI is a trade association for the mutual fund industry, and virtually all U.S. mutual funds are ICI
members (Warther, 1995).

38See https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FA653064100&t=F.223&suf=Q.
39The sources include the Fund Scope Monthly Investment Company Magazine, the Investment Dealers

Digest Mutual Fund Guide, Investor’s Mutual Fund Guide, the United and Babson Mutual Fund Selector,
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coverage is smaller than ICI’s coverage.

A.2 Technical details of Lasso implementation

In optimization (13), adding “1/σ(q̃k,t)” is technically necessary because we have already

standardized q̃k,t to qk,t = q̃k,t/σ(q̃k,t) (see Section 3.2). Optimization (13) is equivalent to

running the vanilla Lasso on the pre-standardized BTQ (β̂ × q̃)

min
λ̃1...λ̃K

1

2|IS|
∑
i,t∈IS

(
ri,t+1 −

K∑
k=1

λ̃kβ̂i,k,tq̃k,t

)2

+ ω
K∑
k=1

∣∣∣λ̃k

∣∣∣ , (A.1)

and then standardizing the coefficients for economic interpretation: λk = λ̃kσ(q̃k,t). Although

we standardize q̃k,t for interpretability, we do not want to lose the information contained in

the original quantity q̃k,t during the Lasso selection. A factor with greater variation in

q̃k,t will have an inflated λk after standardizing to qk,t, but we do not want to penalize it

more for that reason. Standard Lasso implementation where the economic interpretation

is not a concern would recommend standardizing the predictor (BTQ together) across the

{i, t} panel. We are effectively creating a customized standardization based on the required

economic interpretation.

Similarly, for the β-only model, the Lasso implementation is

min
µ1...µK

1

2|IS|
∑
i,t∈IS

(
ri,t+1 −

K∑
k=1

µkβ̂i,k,t

)2

+ ω
K∑
k=1

|µk| . (A.2)

We perform ten-fold cross-validation to tune hyperparameter ω based on only in-sample

information (from 2000 to 2009). For each fold, we exclude one year of observations and

solve the Lasso problem (A.1) using the remaining nine years of in-sample data. The model

is evaluated in the left-out year to form predicted returns r̂
[cv]
i,t+1. After enumerating all folds

and forming predicted returns for all in-sample observations, we calculate the cross-validated

and the Wiesenberger Investment Companies Annual Volumes.
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(CV) in-sample mean squared errors (MSE) as
∑

i,t∈IS

(
ri,t+1 − r̂

[cv]
i,t+1

)2
. Hyperparameter ω

is tuned by choosing the one with the minimum CV MSE.

B Additional empirical results

B.1 Additional properties of the qk,t time series variables

Figure A.2 reports various statistics of the constructed quantity variables qk,t to show the

extent to which these time-series variables comove. Panel A shows the pairwise correlation

matrix of the four Fama-French-Carhart factors. It shows there is significant comovement

(both positive and negative) among the four variables, which is also evident in the time series

plot (Figure 1 in the main text). HML-MOM has the greatest (in absolute value) correlation

of −0.75. All pairwise correlations are far from ±1, indicating that the qk,t variables are far

from collinear, and that they each capture unique information about the underlying quantity

variations.

Panel B shows the similar situation of limited comovement for the 153 JKP factors.

Instead of reporting pairwise correlations, we conduct a principal component analysis (PCA)

on the qk,t variables of the 153 JKP factors and report the cumulative explained variances by

principal components. The plot shows that there is a factor structure among the 153 factor-

level qk,t variables, but there is significant unique information across the different dimensions

of the qk,t variables. The first principal component explains around half of the total variance,

and the first two principal components in total explain around 77% of the total variance. It

requires five principal components to explain 90% of the total variance, and seven to explain

95% of the total variance. We also note that the these in-sample PC statistics are likely

exaggerated due to overfitting.

In summary, the qk,t variables are not collinear, and they each capture unique informa-

tion about the underlying quantity variations. It indicates the paper’s main result on BTQ’s

predictive power is not driven by a few special qk,t variables. The fact that BTQ’s predic-
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tive power is consistent across various factor specifications speaks to the robustness of the

underlying economic mechanism.

Figure A.2: Degree of comovement among the quantity variables (q) of different factors

A. Correlation matrix

MKT SMB HML MOM
MKT 1
SMB 0.55 1
HML 0.47 0.57 1
MOM-0.47 -0.23 -0.75 1

B. PC variances for q’s of 153 JKP factors
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Note: Panel A: pairwise correlation for qk,t of the four Fama-French-Carhart factors. Panel B: cummulative
explained variances by principal components of qk,t series of the 153 JKP factors.

B.2 Predicting factor returns with factor quantity

This appendix subsection presents the results of predicting factor returns with factor quan-

tity. We notice the time-series predictability is not the main focus of this paper, although it

is implied by a part of the paper’s theoretical motivation. In particular, it is related to the

factor premium modeling in Eq. 3. Empirically, we successfully detect the predictability to

a certain extent, consistent with the theoretical motivation. However, we note the apparent

methodological limitations of predicting factor returns with simple time-series regressions.

Table A.1 presents the results of the time-series regression fk,t+1 = µk+λkqk,t+errork,t+1

for various factors. The estimated λk is predominantly positive and statistically significant

for all Fama-French-Carhart factors and most JKP factors. This indicates that each factor’s

expected return is positively related to its quantity, consistent with the theoretical motiva-

tion. The full-sample R2 values are around 5%, which is relatively high for factor return
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Table A.1: Predicting factor return fk,t+1 using quantity qk,t

Fama-French-Carhart factors Across 153 JKP factors

MKT SMB HML MOM Q25 Median Q75

λk (%) 1.04 0.49 0.82 1.10 0.25 0.66 1.00

t-stat (3.25) (2.45) (2.89) (1.76) (1.41) (2.00) (2.64)

µk (%) 0.38 0.19 0.08 0.36 -0.20 -0.01 0.27

t-stat (1.39) (1.16) (0.38) (1.41) (-1.41) (-0.10) (1.63)

R2 (%) 5.05 2.48 5.59 4.35 1.45 4.74 7.36

OOS R2 (%) 6.74 -1.05 -14.70 -1.29 -7.08 -0.95 2.07

Note: Factor return predictive regressions (fk,t+1 = µk + λkqk,t + errork,t+1) for k = each of the Fama-
French-Carhart factors and JKP factors. The point estimates are in percentage terms. That is, the first
cell indicates a one standard deviation increase in qk,t predicts a 1.04% increase in market return in the
following month. The t-statistics are based on Newey-West standard errors. The first five rows are full-
sample regressions (2000-2022) with R2 evaluated in the same full sample. The ordinary IS R2 with a

constant term is reported: R2 = 1 −
∑

t(fk,t+1 − f̂k,t+1)
2/
∑

t(fk,t+1 − µ̂k)
2. The last row “OOS R2” is

with the regressions estimated in 2000-2009 and evaluated in 2010-2022, and we benchmark the R2 against
predicting zero: OOS R2 = 1−

∑
t(fk,t+1 − f̂k,t+1)

2/
∑

t f
2
k,t+1.

prediction (see Welch and Goyal, 2008)

However, the OOS R2 values are mostly negative. The exception is the market factor

whose R2 is even higher at 6.8%. However, we consider this high R2 non-robust possibly due

to the significant noise in the time-series R2 metric. We acknowledge that simple univariate

time-series regression has apparent limitations in predicting aggregate factor returns. Our

construction of the factor quantity series is not designed for time-series return prediction,

which is understood to be a challenging task that requires more sophisticated methods and

richer predictor data (Kelly and Pruitt, 2013).

B.3 Additional results on stock return forecasting

This appendix subsection contains additional empirical results on stock return forecasting

that are omitted in the main text Subsection 4.3. Table A.2 completes Table 3 by providing

the full-sample coefficient estimates for the β-only model.
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Table A.2: Table 3 continued, β-only model’s coefficient estimates

CAPM FF3 FF3C FF5 FF5C

β-only model: µk (%, monthly), t-statistics in parentheses

MKT 0.38 0.45 0.35 0.55 0.50
(1.07) (0.90) (0.75) (1.21) (1.15)

SMB -0.05 0.06 -0.04 0.09
(-0.15) (0.19) (-0.11) (0.27)

HML 0.58 0.51 0.56 0.44
(1.74) (1.59) (1.49) (1.23)

MOM -0.41 -0.48
(-1.09) (-1.26)

CMA 0.04 0.10
(0.17) (0.51)

RMW 0.09 0.13
(0.34) (0.52)

Note: Table 3 in the main text reports the R2 values for the BTQ and the β-only models, as well as the
coefficients for the BTQ model. This table reports the β-only model’s coefficient estimates. Same as the
main text table, the µk coefficients are in percentage terms, and the t-statistics are based on standard errors
clustered by month.

The main text Table 3 already shows that the β-only model has weak predictive power,

with low and even negative R2 values in some OOS cases. Table A.2 shows that the µ

coefficients in the β-only model are either statistically insignificant or negative in various

factor specifications. This, once again, shows the empirical difficulty in establishing a positive

risk-return association using β only without quantity information.

B.4 Additional results on factor selection

We present a more formal factor importance analysis and report other important factors

besides the top five reported in Section 4.4 for the Lasso estimation (Eq. 13). Factor impor-

tance is measured using a feature selection metric from the Lasso regressions. In particular,

we measure the importance of factor k by ωmax
k , the largest ω value at which factor k is still

selected. Specifically, ωmax
k := sup{ω : λ̂k(ω) ̸= 0}, where λ̂k(ω) is the Lasso estimate of λk

at hyperparameter ω. Figure A.3 reports ωmax
k for the top 24 factors in the JKP factor zoo,
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omitting the rest with ωmax
k < 10−9.

Figure A.3: Factor importance in Lasso factor selection
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yr 11-15 lagged returns, na (seasonality)

Note: We measure the importance of factor k by ωmax
k , the largest ω value at which factor k is still selected.

Specifically, ωmax
k := sup{ω : λ̂k(ω) ̸= 0}, where λ̂k(ω) is the Lasso estimate of λk at hyperparameter ω.

This figure reports ωmax
k for the top 24 factors in the JKP factor zoo, omitting the rest with ωmax

k < 10−9.
The vertical black line indicates the tuned ω based on ten-fold cross-validation.

The most significant factor is unambiguously the market factor, followed by the low-risk

factors constructed with technical (past return) information, the value factor constructed

with fundamental information, and a version of the momentum factors. The remaining

less important factors are related to style investment clusters such as the value, quality,

investment, seasonality, etc. Specifically, the 24 factors’ full names, the factor clusters they

belong to, and code names (as in JKP data) are:

market – mkt,
betting against beta low risk betabab 1260d,
return volatility low risk rvol 21d,
idiosyncratic volatility q-factor low risk ivol hxz4 21d,
book-to-market enterprise value bev mev,
current price to high price over last year momentum prc highprc 252d,

58



short-term reversal skewness ret 1 0,
debt-to-market value debt me,
gross profits-to-lagged assets quality gp atl1,
net operating assets debt issuance noa at,
liquidity of book assets investment aliq at,
change in long-term net operating assets investment lnoa gr1a,
change in long-term investments seasonality lti gr1a,
change in quarterly return on equity profit growth niq be chg1,
firm age low leverage age,
cash-based operating profits-to-book assets quality cop at,
market equity size market equity,
Amihud measure size ami 126d,
change in current operating working capital accruals cowc gr1a,
price momentum t-12 to t-1 momentum ret 12 1,
highest 5 days of return scaled by volatility skewness rmax5 rvol 21d,
Ohlson O-score profitability o score,
quality minus junk: growth quality qmj growth,
years 11-15 lagged returns, nonannual seasonality seas 11 15na.

B.5 Additional robustness results

Table A.3 evaluates the robustness of the BTQ model’s predictive power in different size

and time sub-samples for the Fama-French-Carhart factors. Panel A breaks down the stock-

month observations in the OOS evaluation panel into five size groups according to concurrent

NYSE market capitalization quintiles. The same OOS predicted returns (r̂i,t+1) are respec-

tively evaluated in each size group. Panel B breaks downs the OOS panel by time into three

sub-periods: 2010-2014, 2015-2018, and 2019-2022, and reports sub-sample R2 similarly.

Panel C repeats the original joint OOS (2010-2022) evaluation already reported in the main

text Table 3 Panel B Line “BTQ” for ease of reference.

Table A.3 shows the BTQ model’s predictive power as reported in the main text Table 3

is robust in most size and time sub-samples. In particular, the FF3 and FF3C specifications

perform even better in large stocks, which are usually the most challenging group for stock

return prediction. In terms of sub-periods, the BTQ model’s predictive power is relatively

stable over time. The first and the last sub-periods (2010-2014 and 2019-2022) have higher R2
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Table A.3: BTQ OOS prediction accuracy (R2 in %) in size and time sub-samples

evaluation sample # of obs. CAPM FF3 FF3C FF5 FF5C

K = 1 3 4 5 6

Panel A: size group evaluation

1 (small) 323,617 0.69 0.72 0.72 0.58 0.64

2 165,059 0.99 1.37 1.44 0.51 0.79

3 141,153 1.16 1.74 1.83 0.42 0.82

4 115,763 0.76 1.97 2.20 -0.33 0.46

5 (big) 103,927 -0.56 1.66 2.00 -1.18 -0.17

Panel B: sub-period evaluation

2010-2014 321,425 1.10 1.33 1.34 1.03 0.98

2015-2018 255,959 0.17 0.11 0.11 0.07 0.07

2019-2022 272,135 0.90 1.38 1.47 0.37 0.81

Panel C: original OOS evaluation (in Table 3 Panel B)

OOS (2010-2022) 849,519 0.75 1.03 1.07 0.44 0.65

Note: OOS R2 evaluated in different size and time sub-samples for the Fama-French-Carhart factors. Panel
A breaks down the OOS panel into five size groups according to NYSE market capitalization quintiles and
reports the OOS R2 in each size group. Panel B breaks down the OOS evaluation into three sub-periods:
2010-2014, 2015-2018, and 2019-2022. Panel C reports the original joint OOS (2010-2022) evaluation for
reference.

values than the middle sub-period (2015-2018) across various model specifications. These

size and time sub-sample results for the Fama-French-Carhart factors are very similar to

those reported for the factors selected from the factor zoo and the selected PC factors in

main text Table 4.
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