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Abstract

We propose a framework in which noise trading flows impact cross-sectional asset

prices through risk factors. In the model, asset-level flows, when aggregated at the

factor level, drive fluctuations in factor risk premia. The factors’ price impacts in

turn drive the cross-section of asset prices. Empirically, the model explains both

self and cross-asset price impacts with a few risk factors. The model-implied

trading strategy, designed to exploit the subsequent reversion of flow-induced

price impacts, delivers strong and robust investment outcomes and improves the

performance of a wide range of anomalies.
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1 Introduction

The interaction between noise traders and sophisticated investors is crucial in shaping asset

prices. Empirical studies find that noise trading flows create large concurrent price impacts

on individual assets and factor portfolios, and that sorting on asset-level flows generates

anomalous future returns.1 Theoretically, these phenomena are attributed to the limited

risk-bearing capacity of sophisticated investors: as these investors absorb noisy flows by

changing their risky asset holdings, asset prices adjust to compensate them for absorbing

extra risks. Since these concurrent price impacts reflect the changes in risk premia, reversal

strategies based on flows can generate anomalous returns.

Although these sophisticated investors have limited risk-bearing capacity, they still en-

force no-arbitrage pricing in the cross-section of assets—many empirical studies support that

factor pricing governs the cross-section of expected returns (Fama and French, 1993 and

Kozak, Nagel, and Santosh, 2018). In a market governed by factor pricing, what structure

should the price impacts of noisy flows take? Does capturing this structure better explain

the price impacts for the cross-section of assets?

We answer these questions with a framework and methodology that unify price impacts

and factor pricing. Our approach posits that noisy flows impact cross-sectional asset prices

through risk factors. The approach has three steps, as depicted in Figure 1. First, we

exploit the noisy flows’ covariance structure to aggregate individual asset flows into factor

flows. This step is supported by evidence of commonality in noisy flows across various

assets—noise traders tend to buy and sell different assets bearing similar characteristics

together. Second, market clearing dictates that the assets that noise traders purchase must

be sold by sophisticated marginal investors. Although noise traders are uninformed, factor

flows shift marginal investors’ portfolio holdings and their exposure to risk factors. We

introduce a factor-level price sensitivity metric, which quantifies how much factor price

1See, e.g., Coval and Stafford (2007), Lou (2012), Chang, Hong, and Liskovich (2015), Koijen and Yogo
(2019), Barber, Huang, Odean, and Schwarz (2022), and Gabaix and Koijen (2022).
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Figure 1. Factor model of price impacts

flow into individual assets

flow into factors
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Note: Noisy flows impact cross-sectional asset prices through risk factors.

changes in response to one unit of flow-induced risk. This measure differs from the traditional

price elasticity, which measures price sensitivity to changes in quantity, not changes in risk.

Third, individual asset prices respond to fluctuations in factor prices according to their risk

exposures, in line with the arbitrage pricing theory (APT).

Our framework allows us to jointly examine how the entire cross-section of asset prices is

impacted by noisy flows. The cross-sectional restrictions stem from the substitution patterns

across assets bearing similar risk exposures. To illustrate, consider two assets with identical

exposure to risk factors, but only the first asset receives noisy flows. Due to cross-asset

arbitrage by marginal investors, not only the first asset but also the second should experience

a price impact.2 In this regard, our framework differs from empirical works that estimate the

price elasticity of each asset or factor portfolio in isolation (e.g., Gabaix and Koijen, 2022 and

Li and Lin, 2022). Our model’s cross-asset substitution arises from arbitrage mechanisms,

differing from the proportional cross-substitution implied by the logit demand system in

Koijen and Yogo (2019).3

Our framework can be applied to different choices of test assets, factors, and flow data.

The empirical implementation uses standard measures in the literature: the test assets are

2Empirical studies documenting the existence of cross-asset arbitrage include Andrade, Chang, and
Seasholes (2008) and Li, Fu, and Chaudhary (2022).

3The logit demand system implies a proportional substitution pattern across different assets, irrespective
of their return covariances. For an in-depth discussion, see Section 3.3.2 of Train (2009).
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the Fama-French 5×5 size and book-to-market double-sorted portfolios, and the factors

include market (MKT), size (SMB), and value (HML). Noisy flows are constructed from

U.S. equity mutual fund flow-induced trading, following standard literature practices (Coval

and Stafford, 2007 and Lou, 2012). This measure serves as a proxy for noise trading because

(1) mutual fund investors are mainly uninformed retail investors, and (2) their purchases

or sales of mutual fund shares prompt mutual funds to buy or sell individual stocks in

proportion to lagged holdings. We use a monthly sample from 2000 to 2020.

The estimation has two stages, which can be viewed as an upgrade of the Fama-MacBeth

regressions to dynamic factor premia conditional on flows. The first stage estimates what

we term “flow betas” by running time series regressions of each test asset’s flow on the

factor flows. By market clearing, these flow betas capture the changes in marginal investors’

positions triggered by a one-dollar factor flow. In other words, treating a set of flow betas as

portfolio weights, the marginal investors have to increase or decrease their position in this

portfolio depending on negative or positive factor flow.4 Hence, the next stage calculates

asset-level risk exposure (return covariances) against these portfolios.5

The second stage is a panel regression that relates asset returns to the time-series fluc-

tuation in factor flows and the cross-sectional dispersion in risk exposures. This regression

estimates the key price sensitivity coefficient, which quantifies the price impact of one unit of

flow-induced risk for each factor. Our metric encapsulates the key economic idea that flows

change the risk exposures of marginal investors, leading to price impacts as these investors

seek risk compensation. Unlike traditional price elasticity, which only gauges price-flow sen-

sitivity, our measure explicitly quantifies risk exposures. This is particularly useful because

traditional price elasticity can be mathematically ill-defined for factors that are long-short

4The first-stage regression R2 ranges from 50% to 85% for different 5×5 assets, showing that these flow-
beta-formed portfolios capture the common variations in the marginal investors positions well. Our model
is agnostic about the specific drivers of these commonalities across assets, which may arise from sentiment
shifts (Greenwood and Shleifer, 2014) or mutual fund ratings (Ben-David, Li, Rossi, and Song, 2022a).

5This methodology echoes Alekseev, Giglio, Maingi, Selgrad, and Stroebel (2022), who estimate the
betas of mutual fund portfolio changes in response to heat shocks and use these quantity betas as weights
to construct hedging portfolios against climate risk.
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portfolios, whereas our measure remains well-defined. Ultimately, our procedure delivers a

structural model of how the cross-section of asset prices changes as a function of the flows.

The empirical results support the hypothesis that noisy flows impact cross-sectional as-

set prices through risk factors, and deliver a few new insights. First, our structural model

accounts for the majority of flow-induced return variation in the cross-section. The model

explains 7% of return variations for the 5×5 assets with only three parameters, one for each

factor’s price sensitivity. In comparison, ignoring the cross-sectional relation and regressing

each asset’s return onto its flow in isolation yields an 8% R2 with 25 reduced-form parame-

ters. Second, in terms of point estimates, the model-implied price multipliers align with the

reduced-form estimates. Specifically, we estimate the reduced-form multipliers by regressing

the return of each asset on its own flow, while the model-implied multipliers are estimated

by regressing the model-implied price impact on the asset flow. This result also holds for

cross-impacts, measured by regressing each asset’s return on the average flow into adjacent

assets. Moreover, we find that each unit of flow-induced risk causes a greater price impact in

the SMB and HML factors than in the MKT. That is, marginal investors are more averse to

flow-induced risk along the size and value dimensions. This finding aligns with the idea that

investors may have distinct investment mandates for different style portfolios. For example,

an insurance company focusing exclusively on large-cap stocks can absorb MKT flows but

cannot elastically absorb SMB flows, as doing so would require trading small-cap stocks.

Finally, we apply the model-implied flow-price relationship to construct the mean-

variance optimal trading strategy. Because price impact arises from shifts in factor premia

in response to flow, the dynamic strategy capitalizes on the subsequent price reversion. In

other words, the strategy trades against the flow: selling short when an inflow pushes up the

price and buying long when an outflow pushes down the price. Importantly, the strategy

is theory-founded as the mean-variance optimal portfolio that conditions on flow informa-

tion. This feature differs from conventional strategies that directly sort stocks based on their

flows in two key ways. First, our strategy times factors by going long on those experiencing
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outflows and shorting those with inflows. This approach is grounded in the premise of the

paper that price impact is channeled through risk factors, so our strategy is not another

asset-pricing anomaly based on stock-level sorts. Second, the strategy trades more aggres-

sively on factors whose premia are more responsive to flow. The exact intensity is informed

by the structural estimation discussed earlier. Hence, our approach differs from strategies

that indiscriminately trade against all flows.

Turning to empirical findings, by systematically trading against factor-level flows, the

strategy yields an annualized Sharpe ratio of 0.5. This strategy outperforms traditional

strategies that sort on stock-level flows, as well as long- and short-term return reversals.

More importantly, our strategy targets dynamic changes in factor prices by trading

against factor flows, setting it apart from strategies in the “factor zoo” that hinge on un-

conditional factor premia. Building on this insight, we hypothesize and theoretically show

that our strategy should add on top of the investment performances of existing anomalies.

That is, the Sharpe ratio of an existing anomaly should increase once we combine it with our

strategy. Empirical evidence supports this proposition: Among the 154 anomaly portfolios

in Fama and French (2015) and Jensen, Kelly, and Pedersen (2021), 140 or 91% experience a

positive increase in the Sharpe ratio out of sample, after combining them with our strategy.

The average change in the annualized Sharpe ratio is 0.3. The results are robust across a

series of alternative specifications.

The remainder of this paper is organized as follows. Section 2 reviews related literature.

Section 3 provides a theoretical foundation for the factor model of price impacts that we

propose. Section 4 outlines the empirical framework employed for model estimation. Sec-

tion 5 applies this empirical framework to mutual fund flows and Fama-French portfolios.

Section 6 presents the model-implied trading strategy. Section 7 concludes. The appendices

provide supplementary results and robustness checks.
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2 Related Literature

Our paper lies at the intersection of the noise trading literature and the factor pricing

literature—each with its extensive history and recent advancements.6 A closely related

paper is Kozak, Nagel, and Santosh (2018), who argue that due to the arbitrage activity of

marginal investors, asset returns should exhibit a factor structure even in the presence of

noise traders. We build upon their intuition, but focus on the price impacts of noise trading

and show that such impacts are channeled through risk factors.

At one end of this literature intersection, many papers have examined the price impacts

of individual assets or the cross-impacts between pairs of assets, estimating them in isolation.

What sets our framework apart is that we jointly analyze the cross-section of price impacts

within a structural model. A strand of literature documents the impact of noise trading

on factor prices, which overlaps with step (ii) of our procedure (e.g., Teo and Woo, 2004;

Huang, Song, and Xiang, 2021; Ben-David, Li, Rossi, and Song, 2022a; Kang, Rouwenhorst,

and Tang, 2022; Li, 2022; Li and Lin, 2022; see Gabaix and Koijen, 2022 for a summary).

Unlike these studies, our contribution is not merely to estimate factor-level price impacts,

but to use them to explain asset-level price impacts through a structural model. Even within

the scope of factor-level estimation, our measure improves over traditional price elasticity by

capturing risk exposures and eliminating mathematical ambiguities that arise when applying

the traditional metric to long-short portfolios.

Another segment of literature directly estimates cross-impacts between pairs of assets

using reduced-form approaches (e.g., Boulatov, Hendershott, and Livdan, 2013; Pasquariello

and Vega, 2015; Chaudhary, Fu, and Li, 2023). Their approaches often encounter the curse

of dimensionality, because one needs to estimate N2 pairs of cross-impacts for N assets, a

number that further compounds when portfolios of these assets are considered. Our model

6For the noise trading literature, see Campbell and Kyle (1993), Daniel, Hirshleifer, and Subrahmanyam
(2001), among others. For the factor pricing literature, see Fama and MacBeth (1973), Fama and French
(1993, 2015), among others.
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addresses this issue by linking the cross-section of price impacts via risk factors. By doing

so, researchers only need to estimate the price impacts for selected few factors. The cross-

impacts between any pair of assets can subsequently be derived through the covariance

structure of flows and returns.

At the other end of the literature intersection, the canonical factor model builds on the

premise that risk exposure determines price. Our factor model contributes to the literature

by showing that flow impacts price by altering risk exposure. Recently, a growing body

of literature has been exploring new methods for forming asset-pricing factors using firm-

level characteristics or trading signals (e.g., Harvey, Liu, and Zhu, 2016; Kozak, Nagel, and

Santosh, 2018; Kelly, Pruitt, and Su, 2019; Giglio and Xiu, 2021; Kelly, Malamud, and

Pedersen, 2021). Rather than using flows as characteristics to create new factors, we apply

flows to time existing factors. From a practical standpoint, we provide a framework to exploit

an alternative source of return predictability, distinct from the factor zoo literature.

A tangentially related strand of literature examines noise trader risk and limits of arbi-

trage (De Long, Shleifer, Summers, and Waldmann, 1990; Lee, Shleifer, and Thaler, 1991;

Amihud and Mendelson, 1991; Shleifer and Vishny, 1997; Lamont and Thaler, 2003; Loewen-

stein and Willard, 2006). These papers allow differences in prices for assets with identical

payoffs by treating noise trading as a new source of risk. In our framework, however, the

law of one price still holds, implying that two assets with identical payoffs should have the

same price.

Finally, a large strand of literature investigates the asset pricing implications of com-

monality in trading flow and volume. Hasbrouck and Seppi (2001) first document that flows

into the cross-section of stocks exhibit a factor structure using NYSE’s TAQ data. Dou,

Kogan, and Wu (2022) and Kim (2020) demonstrate that the commonality in flows in and

out of mutual funds is a risk factor for expected stock returns. Lo and Wang (2000) show

that trading volume exhibits a factor structure, and Alvarez and Atkeson (2018) show that

trading volume is a priced risk factor. Balasubramaniam, Campbell, Ramadorai, and Ranish
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(2021) find that Indian households’ stock holdings exhibit a factor structure. Unlike these

papers, in our setting, common flows into the cross-section of stocks are not risk factors per

se but create price impacts by changing factors’ risk premia.

3 Theoretical Foundation

This section presents the theoretical foundation for the factor model of price impacts. The

key assumption is that different groups of marginal investors accommodate noisy flows into

specific factor portfolios. This is in contrast to the typical assumption that the same marginal

investor accommodates noisy flows into different factors. Our assumption is motivated by

the evidence that different portfolios have different price sensitivity to flow, as in Gabaix and

Koijen (2022) and Li and Lin (2022). The assumption naturally generates such differential

price sensitivity for different factors, which then leads to the factor model of price impacts

through the law of one price (LOOP).

There are two periods, t = 0 and t = 1, with a gross risk-free rate RF . The model

features N assets. Each asset, denoted by n = 1, 2, . . . , N , has a payoff Xn at time t = 1,

with the payoff vector represented as7 X = (X1, X2, . . . , XN)
⊤. We assume that the payoff

X is jointly normally distributed and exhibits an exact K-factor structure spanned by the

factors: b⊤
1 X,b

⊤
2 X, . . . ,b

⊤
KX. Specifically, bk = (b1,k, b2,k, . . . , bN,k)

⊤ denotes the portfolio

shares of factor k, where one share of factor portfolio embeds bn,k shares of asset n.

At time 0, noise traders buy qk shares of factor k. We assume that theK factors have both

uncorrelated payoffs and uncorrelated flows, i.e., cov(b⊤
k X,b

⊤
j X) = 0 and cov(qk, qj) = 0 for

k ̸= j. This assumption is without loss of generality because factors with correlated payoffs

and flows can always be rotated to be orthogonal. Appendix A.1 provides technical details

on this statement.

Let fn denote the total flow into asset n. Because qk shares of flow into factor k lead to

qkbn,k shares of flow into asset n, it follows that fn =
∑K

k=1 qkbn,k, meaning that asset flow

7We use bold font notation for matrices and vectors, and A⊤ to denote the transpose of matrix A.
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exhibits a K-factor structure. The following proposition summarizes this relationship.

PROPOSITION 1. The relationship between asset flows and factor flows is



f1

f2

· · ·

fN


= q1



b1,1

b2,1

· · ·

bN,1


+ q2



b1,2

b2,2

· · ·

bN,2


+ · · ·+ qK



b1,K

b2,K

· · ·

bN,K


. (1)

Marginal investors on the other side of the market accommodate noisy flows into factors

and determine asset prices based on their optimality conditions. We assume that for each

factor k, a continuum of marginal investors with a total mass µk and a CARA risk-aversion

parameter γk absorbs the flow qk. As discussed, our model differs from traditional setups

in that µk and γk can differ across factors. Intuitively, our model accounts for the potential

segmentation of flow-absorbing investors for these factors.

We now determine the time-0 price of the k-th factor, denoted as a function Pk(qk) of

the flow qk. In equilibrium, the factor price Pk(qk) is determined such that each marginal

investor finds it optimal to buy −qk/µk shares of the factor, clearing the market. That is,

−qk/µk = argmax
y

E[− exp(−γk((Sk/µk + y)b⊤
k X− yRFPk(qk))], (2)

where y represents the change in each marginal investor’s holding in factor k, and Sk is the

total amount outstanding of factor k. The first-order condition of (2) implies that

Pk(qk) = λk(qk − Sk)var(b
⊤
k X) +

E(b⊤
k X)

RF

, (3)

where λk = γk/(µkRF ). As one can see, λk determines the factor-level price response for

each unit of factor risk var(b⊤
k X) induced by the factor flow qk. Naturally, a greater risk

aversion γk or a smaller mass µk of marginal investors for a given factor leads to a larger
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price response λk.

Next, we apply the LOOP to price individual assets relative to factors. That is, if

two portfolios have the same payoff at time 1, they should have the same price at time

0. We denote the time-0 price of asset n as Pn(f), where the vector of asset flows in

Proposition 1 is denoted as f = (f1, f2, . . . , fN)
⊤. Denote the vector of asset prices as

P(f) = (P1(f), P2(f), . . . , PN(f))
⊤. The LOOP implies that

P(f) =
K∑
k=1

cov(X,b⊤
k X)

var(b⊤
k X)

Pk(qk) =
K∑
k=1

(
λk(qk − Sk)cov(X,b

⊤
k X) +

cov(X,b⊤
k X)E(b⊤

k X)

var(b⊤
k X)RF

)
.

(4)

Now, we simplify the asset prices in (4) to obtain an empirically implementable factor

model. Define price impacts as the time-0 percentage price change with and without flow f ,

∆p(f) =

(
P1(f)− P1(0)

P1(0)
,
P2(f)− P2(0)

P2(0)
, . . . ,

PN(f)− PN(0)

PN(0)

)⊤

. (5)

Furthermore, define fundamental returns as the asset returns from time 0 to 1 in the absence

of flow,

R0 =

(
X1

P1(0)
,
X2

P2(0)
, . . . ,

XN

PN(0)

)⊤

. (6)

We can then simplify equation (4) as

∆p(f) =
K∑
k=1

λkqkcov(R0,b
⊤
k X). (7)

So far, the asset flows f , factor flows qk, and portfolio shares bk are measured in number of

shares. To further simplify (7), we switch measurement to dollar values relative to the asset

prices P(0), consistent with standard empirical practice in cross-sectional asset pricing (e.g.,

Fama-French portfolio weights). Although we still employ the same notation throughout the

paper for f , qk, and bk, they are now all measured in dollars.8 By implementing this unit

8The conversion from number of shares to dollar values proceeds as follows: the asset flow becomes
fn → fnPn(0), the flow factor becomes qk → qkPk(0), and the portfolio weights become bn → bnPn(0)/Pk(0).
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change, we can further simplify equation (7).

PROPOSITION 2. The factor model of price impacts in (7) simplifies to

∆p(f) =
K∑
k=1

λkqkcov(R0,b
⊤
k R0). (8)

Equation (8) shows that the equilibrium price impacts ∆p(f) for the cross-section of

assets are influenced by the parameter λk, the factor flows qk, and the quantity of risk

exposure to the factors, represented by cov(R0,b
⊤
k R0).

Several remarks are in order here. First, the cross-asset price impacts in our model

explicitly depend on the risk exposure cov(R0,b
⊤
k R0). This feature implies that flow into

an asset results in a more substantial impact on assets with higher return covariance. This

modeling feature more accurately captures cross-asset price impacts present in the data.

Second, when multiplying equation (8) with the factor’s portfolio weights bk, the param-

eter λk becomes

λk =
b⊤
k ∆p(f)

qkvar(b⊤
k R0)

. (9)

The denominator qkvar(b
⊤
k R0) is the total amount of risk induced by the factor flow, while

the numerator b⊤
k ∆p(f) is the factor-level price impact. Economically, λk measures the

price effect of one unit of flow-induced risk for each factor k. In the context of traditional

asset pricing, which uses the price of risk to measure the ratio of expected returns to the

quantity of risk, our λk measures how this traditional metric shifts in response to factor flow.

Consequently, we term this new parameter λk as the price of flow-induced risk. As shown in

equation (3), our λk directly maps to theoretical parameters—the risk aversion γk and the

mass µk of marginal investors who absorb factor-k flows.

Third, the literature uses price elasticity (∆P/P )/(∆Q/Q) to measure how a 1% change

in quantity impacts the price (see, for example, Gabaix and Koijen (2022) for a summary).

In contrast, in our setting, λk in (9) calculates how a single unit of risk induced by the flow

The portfolio relationship described in Proposition 1 remains unchanged after this conversion.
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impacts the price. There are two key distinctions:

• Economically: We measure risk exposures explicitly to understand the impact of flows

on prices. This is rooted in the core economic channel that price impacts arise because

marginal investors are averse to the risk induced by flows.

• Technically: Most asset-pricing factors are long-short portfolios. For long-short port-

folios, the traditional measure (∆P/P )/(∆Q/Q) is not a well-defined mathematical

object. This is because the total quantity for long-short portfolios is zero (Q = 0), and

division by zero is not allowed in mathematics.9

To put it simply, the newly introduced measure, λk, serves a different purpose than the

traditional price elasticity measure. It is designed to capture the impact of risk on price,

specifically for flow-absorbing investors, and is mathematically well-defined for long-short

portfolios where the traditional measure fails.

Fourth, when all factors have the same price of flow-induced risk λk, our factor model

simplifies to the standard multi-asset price impact model in the literature. Specifically, if

λ1 = λ2 = · · · = λk = λ, then equations (1) and (8) imply that ∆p(f) = λvar(R0)f , a

standard formula in the literature (refer to the survey article by Rostek and Yoon (2020)).

Comparing this formula with our factor model (8), one observes that a meaningful factor

structure for price impacts hinges on the premise that λk can vary across factors, a hypothesis

that we confirm empirically for the Fama-French factors.

Finally, the assumptions required to derive the factor model (8) can be relaxed. This

flexibility includes permitting approximate instead of exact K-factor structures for payoffs

and flows, endogenously generating the segmentation across the K factors, and accommo-

dating the dynamic autocorrelations of flows. An (2023) and An and Zheng (2023) consider

these theoretical generalizations. In particular, even though our model is formulated in a

9The total quantity Q is computed similarly to the portfolio flow ∆Q in Proposition 1, which projects the
asset-level amount outstanding onto a set of portfolio weights. In most empirical studies, the market factor
is included and its portfolio weights align perfectly with the asset-level outstanding Q. Hence, as usually
anticipated, the Q of the market factor equals the sum of all assets. Yet for all other portfolios, Q = 0.
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static context, the cross-sectional factor structure in Proposition 2 remains the same when

marginal investors also anticipate variations in future flows. Consequently, in a dynamic

setting, the empirical estimation also follows the same procedure that we describe next.10

4 Empirical Framework

Having established a theoretical basis for the factor model of price impacts, this section

presents the general estimation procedure.

4.1 Constructing Portfolio Flows

Estimating the factor model of price impacts requires selecting N test assets and K factors,

both of which can be portfolios of M underlying stocks.11 Therefore, we start by describing

how to aggregate stock-level flows into portfolio flows.

The observable data consists of a panel of flow f
{stock}
m,t into stock m at time t. We aim

to aggregate these stock-level flows into K portfolios, where wm,k represents the weight of

stock m in portfolio k. The aggregation to the N test assets is similarly conducted. As

shown by Proposition 1, flows first go into portfolios and then are allocated to individual

stocks according to the portfolio weights. Thus, to aggregate stock-level flows to portfolio

flows, one can perform a cross-section regression of stock flows f
{stock}
m,t on portfolio weights

wm,1, wm,2, . . . , wm,K for each period t, with the regression coefficients being the portfolio

flows q1,t, q2,t, . . . , qK,t.

To formulate this procedure, we collect the portfolio weight wm,k in the M ×K matrix

W. By the portfolio flow theory presented in Proposition 1, the flow qk,t into portfolio k at

10The only difference from the static setting lies in the theoretical interpretation of λk. In the static model,
λk = γk/(µkRF ), with γk and µk representing the risk aversion and the mass of marginal investors of factor
k. In the dynamic model, λk also depends on the autocorrelations of flows (An and Zheng, 2023).

11Our framework is not limited to stocks. We use “stocks” because of our empirical application.
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time t is given by



q1,t

q2,t

· · ·

qK,t


= (W⊤W)−1W⊤



f
{stock}
1,t

f
{stock}
2,t

· · ·

f
{stock}
M,t


. (10)

This aggregation method differs from the simple method of summing up stock-level flows

based on portfolio weights, which lacks a theoretical foundation.

4.2 Estimation Procedure

The estimation involves N test assets, K factors, and T periods. The data inputs consist of

the return rn,t and flow fn,t of test asset n at time t, along with the flow qk,t of factor k at

time t. These variables are defined for n = 1, 2, . . . , N , k = 1, 2, . . . , K, and t = 1, 2, . . . , T .

The construction of test asset and factor flows follows the approach detailed in Section 4.1.

We then proceed in two steps. First, we estimate bk = (b1,k, b2,k, . . . , bN,k)
⊤, which is the

portfolio weights of factor k in terms of the N test assets. Second, we estimate each factor’s

price of flow-induced risk λk.

In Section 3, our model requires the measurement of flows in dollar values for cross-

sectional analysis, such that bk can be interpreted as portfolio weights corresponding to each

dollar invested. However, the model does not impose any intertemporal constraints on flow

normalization. In our empirical application, we normalize flows using the total stock market

capitalization from the preceding period. This approach accommodates the increasing total

market capitalization observed in the data and economically implies that the risk-bearing

capacity of marginal investors is proportional to the total market capitalization. In the

regression analysis, we remove the unconditional time-series mean of rn,t, fn,t, and qk,t, and

omit the intercept terms. This simplification does not affect the parameters of interest.

The data generating process assumes that the price impact, as described in our model

14



(8), occurs repeatedly over time. In each period t, flows fn,t arrive, leading to price impacts

across all assets. Each asset n also experiences a fundamental-driven return fluctuation in

period t, denoted as ξn,t. Equation (8) in Proposition 2 assumes that the K factors exhibit

uncorrelated flows and fundamental returns. However, the K factors in the data may not

meet this condition, so a rotation is needed. The original factors are still denoted by qk,t

(flows) and bk (portfolio weights), while the rotated factors—those that have uncorrelated

flows and fundamental returns—are denoted by q̃k,t and b̃k.

Given Proposition 2, the observed return rn,t of asset n in period t is modeled as follows

rn,t =
K∑
k=1

λkq̃k,tcov(ξn,t, b̃
⊤
k ξt) + ξn,t. (11)

Special attention must be paid to ξt = (ξ1,t, ξ2,t, . . . , ξN,t)
⊤, the fundamental returns of the

N assets in period t. This term replaces R0 in equation (8), and now serves a dual purpose

in equation (11). First, ξt represents the fundamental-return component of rn,t. Second, it

influences the price impact component by determining the quantity of risk exposure through

the term cov(ξn,t, b̃
⊤
k ξt).

In the rest of this section, we present the two-stage procedure for estimating (11).

4.2.1 First-Stage Regression

The first stage of our regression analysis, based on Proposition 1, involves performing time-

series regressions for each asset, in which the flow into an asset fn,t is regressed on the

contemporaneous factor flows qk,t,

fn,t =
K∑
k=1

bn,kqk,t + en,t. (12)

This regression yields the flow beta bn,k, representing the flow into asset n in response to the

flow into factor k.

15



The crucial insight is that flow betas bn,k are the portfolio weights of factor k in terms of

the N test assets. To see this, note that regression (12) implies that, all else equal, a one-

dollar increase in factor-k flow results in an increase of $bn,k in asset-n flow. Consequently,

market clearing dictates that a one-dollar increase in factor-k flow leads to a decrease of $bn,k

in marginal investors’ holdings of asset n. Therefore, the flow betas bk = (b1,k, b2,k, . . . , bN,k)
⊤

represent the changes in marginal investors’ holdings of the N assets caused by a one-dollar

factor-k flow. This interpretation aligns flow betas with the concept of portfolio weights.12

The residual en,t in the first-stage regression (12) represents the asset-level idiosyncratic

flows that are not explained by factor flows. Our factor model (11) does not use these

idiosyncratic flows. The model’s empirical success relies on selecting factors whose flows

qk,t can account for a significant portion of the common variations in asset flows fn,t in

regression (12). Empirically, we indeed find a high regression R2 using the Fama-French

factors. Moreover, concerns about ignoring idiosyncratic flows are alleviated because each

unit of idiosyncratic flows generates a smaller price impact compared to factor flows, as

documented by Gabaix and Koijen (2022) and Li and Lin (2022). Appendix A.3 offers

additional theoretical results into the relationship between the price impacts of idiosyncratic

flows and the mean-variance optimal strategy that capitalizes on these flows.

4.2.2 Second-Stage Regression

The second stage implements a panel regression based on equation (11). Here, asset re-

turn rn,t is regressed on the product of factor flow q̃k,t and the quantity of risk exposure

cov(ξn,t, b̃
⊤
k ξt). The regression estimates the price of flow-induced risk λk for each factor.

Several remarks are in order. First, as discussed before, factors in equation (11) require

rotation to ensure uncorrelated fundamental returns and flows. For technical details, see

Appendix A.1. Second, the unobservable fundamental return ξt serves two roles: 1) as an

12The portfolio weights bn,k obtained in the first-stage regression should not be confused with the original
portfolio weights wm,k in (10). One set of weights pertains to the N test assets, while the other is associated
with the M underlying stocks.
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input in (11) for calculating the quantity of risk cov(ξn,t, b̃
⊤
k ξt), and 2) as the regression

residual. To address the unobservability, we employ an iterative procedure.13 Initially, we

set the fundamental return equal to the observed asset return (i.e., ξn,t = rn,t) and carry out

the second-stage regression. Following this, we use the regression residual, which corresponds

to the model-implied fundamental return, as the new ξn,t. This procedure is repeated until

ξn,t reaches convergence.14 Third, a consistent estimate for λk requires cov(q̃k,t, ξn,t) = 0,

meaning that the factor flow q̃k,t is uncorrelated with the concurrent fundamental return ξn,t.

We address this endogeneity in the empirical application using both OLS and IV methods.

5 Empirical Application

In this section, we apply the empirical framework in Section 4 to mutual fund flows and the

Fama-French test assets and factors.

5.1 Data and Empirical Measures

We use the mutual fund flow-induced trading, as proposed by Coval and Stafford (2007) and

Lou (2012). We employ the Fama-French 5×5 portfolios, which are sorted based on size and

book-to-market equity ratios, as our test assets. We then measure the returns rn,t and flows

fn,t for these portfolios. Additionally, we measure the flows qk,t into the Fama-French three

factors. In what follows, we present the flow construction.

First, we compute mutual fund flows in dollar amounts following standard procedures.

In particular, we retrieve monthly mutual fund returns and characteristics from the CRSP

Survivorship-Bias-Free Mutual Fund database, in addition to quarterly holdings from the

Thomson/Refinitiv Mutual Fund Holdings Data (S12). Our sample period is from 2000

through September 2020.15 Our mutual fund sample comprises both active and passive

13Using long-horizon returns as proxies for fundamental returns yields similar empirical results.
14In the empirical application, we obtain quick convergence within fewer than ten iterations under reason-

able convergence criteria. This result is stable across different initial values.
15The mutual fund industry witnessed significant growth and sustained inflows throughout the 1990s (Lou,
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mutual funds. We denote the total net assets (TNA) of mutual fund m at the end of month

t as TNAm,t, and the mutual fund’s net-of-fee return in month t as r
{fund}
m,t . The mutual fund

flow in dollar amount is defined as follows:

f
{fund}
m,t = TNAm,t − TNAm,t−1(1 + r

{fund}
m,t ). (13)

We conduct a cross-validation of mutual funds’ monthly returns and TNA obtained from the

CRSP database with corresponding data from Morningstar and Thomson/Refinitiv. In the

process, we manually correct several data input inaccuracies. Details regarding this process

are in Appendix C.

Second, we translate mutual fund flows into stock-level flows, using the established as-

sumption in the literature that mutual funds buy or sell stocks in proportion to their prior

holdings. Importantly, we employ the two-quarter-lagged mutual fund holding to transform

mutual fund flow into stock-level flows. For instance, we use the fund holdings from Q4 of

the preceding year for mutual fund flows occurring in April, May, and June. This lag is

based on two considerations. Firstly, the flow-induced trading construction formulated by

Lou (2012) utilizes one-quarter-lagged mutual fund holding. The lag is used because while

uninformed retail investors primarily drive mutual fund flows, mutual fund managers may

have private information.16 The lag ensures that the constructed stock-level flows represent

the non-discretionary component of mutual fund flows, which are induced by retail trading.

Secondly, we impose a two-quarter lag to ensure that the holding information is observable

for the out-of-sample tradable strategy.17 Our results remain robust if we alternatively follow

the literature’s one-quarter lag.

2012; Ben-David, Li, Rossi, and Song, 2022a). In the post-2000 era, the monthly flows of mutual funds have
generally maintained relative stability, prompting us to commence our sample period from 2000, aligning
with Gabaix and Koijen (2022).

16Frazzini and Lamont (2008) and Ben-David, Li, Rossi, and Song (2022b) provide evidence supporting
this theory of uninformed mutual fund investors.

17The holding information is reported with a maximum statutory delay of 45 days (Christoffersen, Danesh,
and Musto, 2015), which implies that Q1 holdings may not be observable in April. To remain conservative,
we use the holding information from Q4 of the previous year for the flows in April, May, and June.
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Figure 2. Time series of 25 test asset flows and three factor flows
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Third, we use stock-level flows and equation (10) to construct the Fama-French MKT,

SMB, and HML flows qk,t and 5×5 test asset flows fn,t. The top two panels of Figure 2 illus-

trate these monthly flows. The cumulative sum of test assets and factor flows are displayed

in the two middle panels. We observe that large stocks display substantial fluctuations in

flows due to their considerable market capitalization. Additionally, we notice a strong com-

monality among the flows of the 25 assets. The MKT flows display the most significant

fluctuation, while the SMB and HML flows also show substantial variation.

As discussed in Section 4.2, we standardize the test asset and factor flows by dividing

them by the total stock market capitalization from the previous month and then subtracting

the unconditional time-series mean. The bottom two panels of Figure 2 plot the standard-

ized test asset and factor flows, which are used in subsequent regressions. The MKT factor

can experience inflows and outflows as large as 0.2% of the total stock market capitalization

within a month.18 The SMB and HML flows display lesser variations. The pairwise correla-

tions between the flows of MKT and SMB, MKT and HML, and HML and SMB are 0.11,

0.25, and -0.11, respectively.

5.2 First-Stage Regression

Table 1 presents the results of the first-stage regression in equation (12),

fn,t = bn,MKTqMKT,t + bn,SMBqSMB,t + bn,HMLqHML,t + en,t, (14)

In this time-series regression, the flow fn,t of each asset n is regressed against the factor

flows qMKT,t, qSMB,t, and qHML,t to estimate bn,MKT, bn,SMB, and bn,HML. The regression R2 is

provided in the upper-middle panel of Table 1, ranging from 50% for smaller companies to

80% for larger ones. These high R2 values imply that factor flows account for a substantial

18Flow into the MKT factor induced by mutual fund trading is less volatile than aggregate flow into mutual
funds (which Appendix Figure A.1 shows) for two reasons. First, mutual funds do not invest 100% in stocks.
Second, by our construction (10), flow into the MKT factor is generally less volatile than the sum of flows
into all stocks when idiosyncratic flows are present.
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proportion of the common variations in asset flows. This finding supports our approach of

using three factors to estimate the price impacts of the 5×5 assets.

As discussed in Section 4.2.1, flow betas can be interpreted as portfolio weights. We now

empirically investigate this relationship. First, the middle-left panel of Table 1 displays the

MKT flow beta bn,MKT. For instance, a bBL,MKT value of 0.3252 implies that an increase of

$1 in the MKT flow results in a $0.3252 increase in the BL asset flow. The top-left panel

of Table 1 provides the market capitalization weight wn of the 5×5 assets, calculated as the

time-series average of the ratio of asset n’s market capitalization to the total stock market

capitalization. The value wn serves as a proxy for the weights of the 5×5 test assets in the

Fama-French MKT portfolio.

In line with the theory, for all assets n, we observe that the flow beta bn,MKT is closely

aligned with the Fama-French MKT weight wn. All bn,MKT values are positive, and their

sum is close to one. This finding aligns with the intuition that, on average, mutual funds

hold the market portfolio. This finding also demonstrates that our methods of constructing

factor flows and interpreting flow betas are consistent with the data.

Second, the middle-middle panel of Table 1 presents the SMB flow beta bn,SMB. We

notice that bn,SMB resembles how Fama and French construct the small-minus-big factor.

For instance, bn,SMB is positive for small companies, while for large companies, bn,SMB is

negative. Furthermore, the sum of all positive bn,SMB values is 0.99, and the sum of all

negative bn,SMB values is −0.89. The absolute value of both sums is close to one, once again

aligning our empirical evidence with theoretical interpretation.

Third, the middle-right panel of Table 1 presents the HML flow beta bn,HML. We find

that only the BL and B2 assets have negative flow betas, while all other assets have positive

flow betas. The sum of positive bn,HML values is nearly 2, and the sum of negative bn,HML

values is approximately −0.5. While these flow beta estimates broadly align with how

Fama and French construct the HML factor, there are significant numerical differences.

What could explain this notable disparity? The key lies in the fact that the BL and B2
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assets, representing large-growth companies, collectively account for over 50% of the total

stock market capitalization. Therefore, the empirical evidence suggests that flows along the

value direction are trading large-growth companies against all other companies. This finding

substantially deviates from the Fama-French 2×3 construction.

In summary, the first-stage regression yields flow betas bn,k that represent the relationship

between the flow of asset n and the flow of factor k. Empirically, these flow betas align well

with the theoretical interpretation of portfolio weights, and show that factor flows capture

common variations in asset flows. With these estimated portfolio weights, we can now

proceed to execute the second-stage regression.

5.3 Second-Stage Regression

Table 2 presents the results of the second-stage regression, as detailed in Section 4.2.2,

rn,t =
∑

k∈{MKT,SMB,HML}

λkq̃k,tcov(ξn,t, b̃
⊤
k ξt) + ξn,t. (15)

Recall that one needs to rotate the MKT, SMB, and HML factors to obtain uncorrelated

flows and fundamental returns. For rotated factors, q̃k,t represents the flows, and b̃k denotes

the portfolio weights.19 Appendix Table A.1 presents the details of this rotation and shows

that the rotated factors still resemble market, size, and value factors.

The first column of Table 2 presents the estimated price of flow-induced risk λk that

represents the price impact of each factor in response to one unit of risk induced by the

flow.20 To interpret the estimated λMKT = 9.54, recall that the equilibrium condition (3)

gives λMKT = γMKT/(µMKTRF ), where γMKT and µMKT denote the risk aversion and mass of

the MKT factor’s marginal investors, respectively, and RF represents the gross risk-free rate.

19The rotation is to ensure a strict alignment between the empirical regression and the theoretical foun-
dation in Section 3. However, even without this rotation, the second-stage regression results are similar.

20The t-statistics are highly significant and are calculated using heteroskedasticity-robust standard errors.
We have also calculated standard errors clustered by year and found them to be smaller than the robust
standard errors. To be conservative, we report t-statistics based on robust standard errors.
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Table 2. Second-stage regression: asset returns on factor flows × quantity of risk exposure

total return OLS intraday return OLS intraday return IV

λMKT 9.54 5.99 6.76

(14.48) (12.07) (2.83)

λSMB 109.93 64.42 151.56

(9.84) (6.19) (3.49)

λHML 65.21 42.13 136.94

(2.59) (1.90) (1.20)

Note: In this table, we run the second-stage regression of 5×5 asset returns on the product of factor flows
and the quantity of risk to estimate the price of flow-induced risk. The unit of flow is expressed as a
percentage of the total stock market capitalization, and the quantity of risk is expressed in terms of the
annualized variance in returns. The first two columns display the OLS estimation results using total returns
and intraday (open-to-close) returns. The third column outlines the IV estimation results using intraday
returns, in which each factor flow is instrumented by the factor’s concurrent overnight (close-to-open) return
and the difference between one-month and half-year lagged flows. The figures in parentheses represent the
t-statistics, computed using heteroskedasticity-robust standard errors.

Assuming γMKT ≈ 3 and RF ≈ 1, we obtain µMKT ≈ 0.3, meaning that 0.3% of the total

stock market capitalization actively responds to flow as mean-variance optimizing marginal

investors.21 While this figure may seem small, it actually aligns with Gabaix and Koijen

(2022), who find that the market is approximately 100 times less elastic than theoretical

models suggest. Translated into our terms, this means that less than 1% of the market

actively responds to flow.

Performing the same calculation for the SMB and HML factors suggests that the market

is even less elastic for these factors. Specifically, our estimates suggest that 0.03% and 0.05%

of the total stock market capitalization actively respond to SMB and HML flows, respectively.

These empirical findings lend support to our theoretical assumption that different factors are

met with different flow-absorbing capacities. One possible explanation for these results lies

in the differing investment mandates. As we noted before, an insurance company that solely

focuses on large-cap stocks could absorb MKT flows but would not be able to elastically

absorb SMB flows, which would require trading in small-cap stocks.

21Recall that the unit of flow is expressed as a percentage of the total stock market capitalization. Our
choice of risk aversion γMKT ≈ 3 is based on equation (9.6) in Cochrane (2009), combined with the fact that
the Sharpe ratio of the stock market is roughly 0.5 and the volatility is 0.16.
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Lastly, we address potential endogeneity issues concerning the estimates of λk. For an

unbiased estimate, it is essential that the factor flow q̃k,t is uncorrelated with the fundamental

return ξn,t. By constructing noisy flows q̃k,t using lagged fund holdings, we alleviate this

endogeneity concern. This is because q̃k,t serves as a proxy for the portion of mutual fund

flows that are mechanically driven by retail investors’ buying and selling of mutual fund

shares, rather than by the discretionary allocation of mutual fund managers. Retail investors

are unlikely to be informed about ξn,t.

To address potential endogeneity concerns arising from mutual fund investors chasing

fundamental returns, we perform additional robustness checks. We follow the methodology of

Li (2022) and substitute asset return rn,t with intraday return r
{intraday}
n,t , which is the monthly

aggregation of all open-to-close returns for each trading day.22 The underlying premise is

that intraday returns are more likely to reflect institutional trading, while overnight (close-

to-open) returns are more likely to reflect retail trading (Lou, Polk, and Skouras, 2019, 2022;

Bogousslavsky and Muravyev, 2021). To isolate the price impacts driven by mutual fund

flows, we utilize the intraday return r
{intraday}
n,t as the dependent variable in regression (15).

The regression results are reported in the second column of Table 2. The estimated λk is

similar to, albeit smaller than, those in the first column.

Moreover, we supplement the intraday return OLS estimate with an IV strategy.

The first instrument for q̃k,t is the factor’s concurrent overnight return, represented by∑25
m=1 b̃m,kr

{overnight}
m,t . The IV relevance condition is met as factor flows are positively cor-

related with overnight returns, attributable to the return-chasing behavior of mutual fund

investors. Furthermore, given that overnight and intraday returns are non-overlapping, the

IV exclusion restriction is likely to be satisfied. The second instrument is q̃k,t−1−q̃k,t−6, which

represents the difference between lagged flows over one month and half a year. The relevance

of this instrument stems from the serial correlation observed in factor flows. The exclusion is

22Following Lou, Polk, and Skouras (2019), we construct the intraday and overnight returns on each date

t as r
{intraday}
t = closet/opent − 1 and r

{overnight}
t = (1 + r

{close-to-close}
t )/(1 + r

{intraday}
t ) − 1. We source

the price data from CRSP and adjust daily close-to-close returns for corporate actions such as stock splits.
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because lagged flows are less likely to provide information about the fundamental return ξn,t.

Importantly, using the difference in lagged flows, q̃k,t−1 − q̃k,t−6, as the instrument, rather

than the lagged flow q̃k,t−1 itself, enables us to control for potential confounding channels,

such as the possibility of lagged flow inducing future price reversion. The third column of

Table 2 reports the IV results.23 The point estimates largely align with those presented in

the first two columns.

Additionally, to address concerns about serial correlation in flows biasing our λk esti-

mates, we use the methodology of Lou (2012) to isolate unexpected flow components and

reestimate Table 2. The results using unexpected flows, presented in Appendix Table A.3,

align closely with our baseline findings in Table 2.

In summary, the second-stage regression yields λk, which represents the price elasticity of

each factor in response to one unit of risk induced by the flow. Empirically, the substantial

variation in λk values supports our theoretical premise that different factors are met with

different flow-absorbing capacities.

5.4 Evaluating Model Fit

Ultimately, our model aims to explain both self and cross-asset price impacts of the Fama-

French 5×5 assets. In this section, we show that our estimated model indeed fits the data.

5.4.1 Self Price Impact

In this subsection, we show that our model effectively captures the R2 values and price

multipliers of how an asset’s flow impacts its own price. As an atheoretical benchmark, we

carry out a time-series regression of each asset’s return rn,t against its respective flow fn,t,

rn,t = ηnfn,t/wn + ϵn,t. (16)

23The IV first-stage regression results are provided in Appendix Table A.2.
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In this regression, we normalize the flow by the asset’s market capitalization weight wn,

ensuring that our estimated multipliers ηn align with standard price impact multipliers.

Panel A of Figure 3 reports the R2 values from regression (16) for each 5×5 asset. This

benchmark regression indicates an average R2 value of approximately 8% across all assets.

In contrast, Panel B reports the R2 values derived from our factor-model regression (15)

for each 5×5 asset.24 We find an average R2 value of about 7%, which broadly aligns with

the benchmark R2 values. Panel C reports the self-price multiplier ηn from regression (16)

for each 5×5 asset.25 We observe that the self-price multipliers for the majority of assets

generally range from 10 to 15. Panel D reports the model-implied self-price multipliers.

Here, we use the model-implied price impact
∑

k∈{MKT,SMB,HML} λkq̃k,tcov(ξn,t, b̃
⊤
k ξt) as the

left-hand side of regression (16). The model-implied multipliers are around 10, aligning with

the benchmark multipliers for most assets, albeit the magnitudes are slightly smaller.

5.4.2 Cross Price Impact

Our factor model (15) captures not only the self-price impacts, but also the cross-asset price

impacts. As an atheoretical benchmark, for each 5×5 asset n, we regress its return on the

average flow into the adjacent assets on the 5×5 grid,

rn,t = ϕn

( ∑
m adjacent to n

fm,t/wm

)/
(number of m adjacent to n) + ϵn,t. (17)

Panel A of Figure 4 reports the R2 values from regression (17) for each 5×5 asset. This

benchmark regression shows an average cross-impact R2 value of around 9%. The model-

implied R2 values, which are at roughly 7% shown in Panel B, are generally in line with the

benchmark values.

Panel C of Figure 4 reports the cross-impact multipliers ϕn from regression (17) for each

24For each asset n, the R2 is computed as the ratio of the variance of model-implied price impact∑
k∈{MKT,SMB,HML} λkq̃k,tcov(ξn,t, b̃

⊤
k ξt) to the variance of rn,t.

25The heteroskedasticity-robust t-statistics are around 4 for most assets.
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Figure 3. Regression R2 and multipliers of benchmark and model-implied self-impact

(A) benchmark self R2 (B) model-implied R2

(C) benchmark self multiplier (D) model-implied self multiplier

mean std P25 median P75

benchmark self R2 (unit: %) 7.89 2.79 6.85 8.78 9.93

model-implied R2 (unit: %) 6.99 0.55 6.65 7.10 7.35

benchmark self multiplier 13.24 3.02 10.99 12.62 15.11

model-implied self multiplier 10.49 3.81 7.66 9.75 11.41

Note: In panel (A), we report the benchmark R2 values from regression (16), where we regress return on
flow for each 5×5 asset. In panel (B), we report the R2 values from our factor-model regression (15) for each
5×5 asset. In panel (C), we report the benchmark self-price multiplier ηn from regression (16) for each 5×5
asset. In panel (D), we report the model-implied self-price multiplier, where we regress the model-implied
price impact on flow for each 5×5 asset. The table at the bottom provides the summary statistics for these
R2 values and multipliers.
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Figure 4. Regression R2 and multipliers of benchmark and model-implied cross-impact

(A) benchmark cross R2 (B) model-implied R2

(C) benchmark cross multiplier (D) model-implied cross multiplier

mean std P25 median P75

benchmark cross R2 (unit: %) 8.88 2.01 8.12 8.96 10.17

model-implied R2 (unit: %) 6.99 0.55 6.65 7.10 7.35

benchmark cross multiplier 15.18 2.47 13.33 14.58 16.93

model-implied cross multiplier 11.38 2.78 9.12 11.68 13.13

Note: In panel (A), we report the benchmark R2 values from regression (17), where we regress each 5×5
asset’s return on the average flow into the adjacent assets. In panel (B), we report the R2 values from our
factor-model regression (15) for each 5×5 asset. In panel (C), we report the benchmark cross-price multiplier
ϕn from regression (17) for each 5×5 asset. In panel (D), we report the model-implied cross-price multiplier,
where we regress the model-implied price impact on the average flow into the adjacent assets. The table at
the bottom provides the summary statistics for these R2 values and multipliers.
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5×5 asset. The result reveals substantial cross multipliers, averaging around 15. Intriguingly,

most cross-impact multipliers exceed the self-impact multipliers shown in Panel C of Figure 3.

These significant cross multipliers originate from the highly correlated flows and fundamental

returns of adjacent test assets. This evidence highlights that cross multipliers constitute an

important feature of the data that needs to be explained.

Panel D reports the model-implied cross multipliers, demonstrating our model’s ability

to capture cross-impacts in the data. As in the previous analysis, we use the model-implied

price impact as the left-hand side of regression (17). The model-implied cross multipliers

generally hover around 11, aligning with the benchmark cross multipliers for most assets,

albeit the magnitudes are smaller.

In summary, our factor model explains well both self and cross-asset price impacts of

the Fama-French 5×5 assets. The evidence supports our initial hypothesis that noisy flows

impact cross-sectional asset prices through risk factors.

6 Trading Strategy

In this section, we apply the estimated factor model to construct the model-implied optimal

strategy to capitalize on the flow, thereby demonstrating its investment performance.

6.1 Strategy Construction

We begin by delving into the rationale behind our strategy. The underlying idea is that noisy

flows temporarily distort prices from their fundamental values, implying that flow-induced

price impacts should see long-term reversions. Intuitively, the mean-variance optimal rever-

sion strategy should trade against the portfolio that has the maximum price impact per unit

of risk. Consequently, we term this portfolio as the Maximum-Price-Impact-Ratio (MPIR)

portfolio. The associated strategy, which shorts this portfolio, is henceforth referred to as

the MPIR strategy. Appendix A.2 discusses the details of the mean-variance optimization

30



of price impacts.

Given that our factor model (15) robustly characterizes the 5×5 assets’ price impacts

using only three factors, the model-implied MPIR strategy takes a simple form,

∑
k∈{MKT,SMB,HML}

−λkq̃k,tb̃k. (18)

The MPIR strategy shorts the factor portfolio b̃k if there is a positive inflow q̃k,t and longs

if there is an outflow. The dynamic strategy changes every month t depending on the factor

flow q̃k,t. The magnitude of the long/short position is proportional to the estimated λk.

At its core, the MPIR strategy times factors based on flow information. Three features

of this strategy merit further discussion. First, although the MPIR strategy is formed using

the 5×5 assets, its portfolio weights rely exclusively on the three factors’ estimated risk

compensation λk. Importantly, it does not use the 5×5 multipliers estimated in Figure 4.

The rationale is that factor-level optimization, unlike asset-level optimization, delivers more

robust out-of-sample price reversion. This method is reminiscent of the traditional asset

pricing approach, which employs factors to estimate the mean-variance optimal portfolio.

Second, the MPIR strategy differs from a simplistic strategy that indiscriminately trades

against all flows, which can be represented by
∑

k∈{MKT,SMB,HML}−q̃k,tb̃k. This distinction

arises because the compensation λk for absorbing flow-induced risk varies across factors, as

demonstrated in Section 5.3. Therefore, the optimal strategy trades more aggressively on

factors that offer higher compensation per unit of risk.

Third, although the flow in month t distorts the price within the same month, the price

might not revert entirely in month t + 1, potentially taking longer. Consequently, to con-

struct the portfolio for month t + 1, we implement a staggered strategy that combines the

portfolios (18) from the previous six months, from t−5 to t, using equal weights. Section 6.4

demonstrates the robustness of altering the initial and final months of the staggered strategy.
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Figure 5. MPIR strategy’s in-sample reversion and out-of-sample cumulative excess return
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Note: In the left panel of the figure, we display REV{t}, denoting the ratio of average one-month-forward
reversion to the average model-implied price impact for the staggered MPIR strategy. This ratio is computed
for each training window starting in January 2000 and ending in month t. The right panel depicts the
cumulative excess returns of the MPIR strategy during the out-of-sample period, which spans from January
2005 to September 2020. For detailed strategy construction, refer to Appendix A.4.

6.2 Performance Evaluation

Our initial goal is to determine the effectiveness of the MPIR strategy within the sam-

ple. This utilizes expanding estimation windows, beginning from January 2000 and ending

in December 2004, with the out-of-sample testing period extending from January 2005 to

September 2020. Within each training window, the strategy is implemented, and the in-

sample price reversion is computed. Subsequently, the ratio of the average reversion to the

average model-implied price impact is calculated (see Appendix A.4). Ideally, this reversion

ratio should be 100%.

The left panel of Figure 5 presents the reversion ratio REV{t} corresponding to each

training window that ends in month t. In most of the windows, this ratio falls below 100%,

meaning that the model-implied price impact does not revert fully. Notably, the reversion

exhibits considerable improvement following the financial crisis of 2008. This aligns with

existing literature findings that after the crisis, marginal investors demonstrate reduced

willingness to undertake substantial risk (Du, Tepper, and Verdelhan, 2018).

32



Table 3. The performance of MPIR strategy versus sorting-based strategies

Return Excess return

Strategy mean std mean std Sharpe ratio

MPIR 0.43 (2.01) 0.85 0.41 (1.94) 0.85 0.49

Trading-against-FIT 0.01 (0.30) 0.11 0.00 (-0.16) 0.11 -0.04

Trading-against-dollar FIT 0.00 (0.11) 0.07 -0.01 (-0.63) 0.07 -0.16

Short-term reversal 0.01 (0.34) 0.10 0.00 (-0.13) 0.10 -0.03

Long-term reversal -0.04 (-1.60) 0.09 -0.05 (-2.14) 0.09 -0.54

Note: This table compares the performance of our MPIR strategy to sorting-based strategies. Specifically,
we examine trading-against-FIT, trading-against-dollar FIT, short-term reversal, and long-term reversal.
These are low-minus-high strategies sorted by 1) FIT (flow-induced trading), 2) dollar FIT, 3) one-month
past return, and 4) 13 to 60-month prior returns, respectively. We report annualized statistics including each
strategy’s sample mean (t-statistics in parentheses), standard deviation for both raw and excess returns, and
the Sharpe ratio. The sample period runs from January 2005 to September 2020.

The fact that the in-sample reversion is less than 100% suggests a potential overestimation

of the concurrent price impact in our model. To address this, for each training window, we

normalize the estimated λk by REV{t} if REV{t} is less than 100%. These adjusted λk values

are then employed to construct the out-of-sample MPIR strategy for the succeeding month

t+1. Section 6.4 investigates the robustness of our approach when this normalization is not

implemented.

The right panel of Figure 5 plots the cumulative excess returns of the MPIR strategy.

For the out-of-sample period from January 2005 to September 2020, the strategy delivers

an annualized Sharpe ratio of 0.49. The performance of the MPIR strategy markedly im-

proves during the 2008 financial crisis, aligning with the fact that marginal investors demand

higher risk compensation during periods of crisis, which tends to enhance the performance

of reversion strategies (Nagel, 2012).

We now show that the MPIR strategy is distinct from and outperforms traditional sorting-

based approaches. We examine two flow-based strategies: “trading-against-FIT” based on

flow-induced trading as constructed in Lou (2012), and “trading-against-dollar FIT” based

on flow-induced trading in dollar values. We also consider two widely-used return-based
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reversal strategies: “short-term reversal” from Jegadeesh (1990) based on the past one-month

returns, and “long-term reversal” from De Bondt and Thaler (1985) based on the past 13

to 60-month returns. In each month, we sort stocks into quintiles using these metrics. We

then create long-short portfolios by going long on the bottom quintile and short on the top

quintile to capitalize on reversals. Table 3 reveals that the MPIR strategy outperforms these

alternatives, both in Sharpe ratio and statistical significance.

6.3 MPIR Strategy Improves Existing Anomalies

The MPIR strategy targets dynamic changes in factor prices by trading against factor flows,

setting it apart from strategies in the factor zoo that hinge on unconditional factor premia.

Therefore, we hypothesize that our strategy should add on top of the investment perfor-

mances of existing anomalies. That is, the Sharpe ratio of an existing anomaly should in-

crease once we combine it with our strategy. Appendix A.2 provides a theoretical foundation

for this assertion. This section substantiates it empirically.

We denote the MPIR strategy’s excess return in month t + 1 as r̃∗t+1. We use the 154

anomaly portfolios from Jensen, Kelly, and Pedersen (2021), which include the Fama-French-

Carhart six factors among a broad array of other firm characteristics-based anomaly port-

folios.26 We denote the excess return of anomaly portfolio j in month t + 1 as rj,t+1. The

excess return of the combined portfolio j in month t+ 1 is defined as

r∗j,t+1 := rj,t+1 + wj,tr̃
∗
t+1, (19)

where wj,t denotes the mean-variance optimal mixing ratio, which is estimated in-sample

(refer to Appendix A.4 for detailed formula).

Figure 6 illustrates the improvement in the Sharpe ratio. The diagram is divided into

three panels, showcasing the Fama-French-Carhart six factors, the Jensen-Kelly-Pedersen 13

26We incorporate the 153 anomaly portfolios from Jensen, Kelly, and Pedersen (2021), along with the
market excess return.
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Figure 6. MPIR strategy increases out-of-sample Sharpe ratio of anomaly portfolios
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and Pedersen (2021) 154 portfolios, including the Fama-French-Carhart six factors and a large list of other
firm characteristics-based anomaly portfolios. These anomaly portfolios are also organized into 13 thematic
categories. The red diamonds represent the Sharpe ratio of the portfolio that optimally combines the original
anomaly portfolio with our MPIR strategy. The table at the bottom presents the summary statistics of
the changes in the Sharpe ratio between the original anomaly portfolios and the combined portfolios. The
expanding windows span from January 2000 to December 2004, and the out-of-sample testing period extends
from January 2005 to September 2020.
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themes, and individual anomaly portfolios respectively. It is evident that the Sharpe ratios of

the combined portfolios (represented by red diamonds) exceed those of the original anomaly

portfolios (represented by blue dots) across the spectrum. Out of the 154 portfolios, 140,

or 91%, exhibit a positive increase in the Sharpe ratio.27 The average change in the Sharpe

ratio is 0.26, and the median change is 0.30. This empirical evidence shows that our MPIR

strategy improves the investment performance of existing anomalies.28

From a practical standpoint, the MPIR strategy is less susceptible to issues related to

turnover and transaction costs. First, our strategy forms staggered portfolios based on the

previous six months’ flow, so only one-sixth of the positions need adjustment each month.

Second, by its very design, our strategy provides liquidity to flows. Generally speaking,

liquidity provision strategies are more likely to earn rather than pay bid-ask spreads.

6.4 Robustness

Here, we show that the MPIR strategy is robust to alternative specifications. Our baseline

strategy trades against the average factor flows from the past six months. However, there

may be concerns about the accessibility of monthly flow information at the start of the

subsequent month. Moreover, the decision to look back six months, as opposed to a different

time period, might be questioned. We now demonstrate that our findings remain robust to

these concerns.

In the top two panels of Table 4, we report the Sharpe ratio of the MPIR strategy and the

average Sharpe ratio change for the 154 anomaly portfolios for different skip and lookback

months. For a large set of alternative parameters, the investment results align closely with

27The decrease in the Sharpe ratio for a small number of anomalies can be attributed to the weight wj,t

becoming notably large during periods when the MPIR return r̃∗t+1 is negative. This situation arises because
wj,t is divided by the Sharpe ratio of anomaly j up to month t, in order to ensure proper risk weighting as
described in equation (A.33) in the appendix. Consequently, if the historical Sharpe ratio is near zero, the
weight wj,t can increase substantially.

28Appendix Figure A.2 presents a robustness test substituting r̃∗t+1 from the MPIR strategy in equation
(19) with short- and long-term reversal strategies. We find that the investment gains from existing anomalies
vanish. This placebo test confirms that the enhanced performance over existing anomalies is not simply a
mechanical effect of strategy combination.
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Table 4. Robustness to skip, lookback period, and normalization

1 2 3 4 5 6 7 8 9 10 11 12

lookback month

0

1

2

s
k
ip

 m
o

n
th

Panel A: MPIR strategy Sharpe ratio

0.38 0.56

0.30

0.57

0.36

0.29

0.52

0.36

0.26

0.53

0.40

0.32

0.49

0.35

0.26

0.42

0.24

0.12

0.36

0.07

-0.06

0.34

0.03

-0.06

0.21

0.03

-0.33

0.12

0.00

-0.26

0.09

-0.08

-0.13

1 2 3 4 5 6 7 8 9 10 11 12

lookback month

0

1

2

s
k
ip

 m
o

n
th

Panel B: average Sharpe ratio change for anomalies

0.21 0.32

0.12

0.32

0.16

0.13

0.27

0.16

0.11

0.27

0.18

0.14

0.26

0.16

0.11

0.21

0.09

0.02

0.18

-0.01

-0.08

0.17

-0.01

-0.06

0.08

-0.01

-0.19

0.03

-0.02

-0.08

0.02

-0.03

-0.03

1 2 3 4 5 6 7 8 9 10 11 12

lookback month

0

1

2

s
k
ip

 m
o

n
th

Panel C: MPIR strategy Sharpe ratio (without in-sample normalization)

0.42 0.39

0.12

0.49

0.31

0.37

0.42

0.27

0.29

0.41

0.28

0.30

0.38

0.24

0.25

0.27

0.13

0.11

0.18

0.03

-0.00

0.18

0.04

0.00

0.11

-0.02

-0.06

0.12

-0.01

-0.04

0.11

-0.01

-0.04

1 2 3 4 5 6 7 8 9 10 11 12

lookback month

0

1

2

s
k
ip

 m
o

n
th

Panel D: average Sharpe ratio change for anomalies (without in-sample normalization)

0.23 0.17

-0.06

0.24

0.10

0.16

0.19

0.07

0.10

0.18

0.08

0.11

0.17

0.07

0.08

0.09

-0.01

-0.01

0.04

-0.07

-0.08

0.05

-0.06

-0.07

0.00

-0.10

-0.11

0.00

-0.09

-0.10

0.01

-0.08

-0.09

Note: In the top two panels, we report the Sharpe ratio of the MPIR strategy and the average Sharpe
ratio change for the 154 anomaly portfolios for different skip and lookback months. Our base specification,
which trades against the flows from the past six months, corresponds to the (0,6) position. The top two
panels apply normalization by the in-sample reversion ratio, consistent with our base specification, while the
bottom two panels do not. The out-of-sample testing period spans from January 2005 to September 2020.

our baseline specification, which corresponds to the (0,6) position in the table. Importantly,

even if we skip two months (i.e., using the flow information up to January at the end of

March), our strategy still performs reasonably well.

In the bottom two panels of Table 4, we replicate the analysis from the top two pan-
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els, however without applying normalization based on the in-sample reversion ratio. The

investment outcomes are similar, though slightly diminished, indicating that the in-sample

normalization is indeed useful.

7 Conclusion

In conclusion, our paper proposes a framework in which noise trading flows impact cross-

sectional asset prices through risk factors. In the model, asset-level flows, when aggregated

at the factor level, drive fluctuations in factor risk premia. The factors’ price impacts in turn

drive the cross-section of asset prices. Empirically, the model explains both self and cross-

asset price impacts with a few risk factors. The model-implied trading strategy, designed to

exploit the subsequent reversion of flow-induced price impacts, delivers strong and robust

investment outcomes and improves the performance of a wide range of anomalies.
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Appendix

The appendices provide additional details and results.

A Technical Details

In this appendix, we provide technical details omitted in the main text.

A.1 Details for Rotation

In this appendix, we present details for rotating factors. The goal is to find a K ×K matrix

O, such that the rotated factors defined using

(b̃1, b̃2, . . . , b̃K) := (b1,b2, . . . ,bK)O, (A.1)

(q̃1,t, q̃2,t, . . . , q̃K,t)
⊤ := O−1(q1,t, q2,t, . . . , qK,t)

⊤. (A.2)

have uncorrelated fundamental returns and flows, i.e., cov(b̃⊤
k ξt, b̃

⊤
j ξt) = 0 and

cov(q̃k,t, q̃j,t) = 0 for any k ̸= j. The calculations remain the same whether we use the

payoff X and flow measured in the number of shares, or the fundamental return ξt and flow

measured in dollar values. For simplicity, we opt for the latter setup as in equation (11).

We write portfolio weights of the K factors as an N ×K matrix B = (b1,b2, . . . ,bK).

We write the K factors’ flows as a K × 1 vector qt = (q1,t, q2,t, . . . , qK,t)
⊤. In matrix form,

the conditions for uncorrelated fundamental returns and flows become

O⊤B⊤var(ξt)BO = IK , (A.3)

OΠO⊤ = var(qt), (A.4)

where Π = diag(π1, π2, . . . , πK) is some K ×K diagonal matrix.
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To obtain O, we first carry out Cholesky decomposition and obtain

B⊤var(ξt)B = U⊤U, (A.5)

whereU is anK×K upper triangular matrix. Second, we carry out eigenvalue decomposition

(
Uvar(qt)U

⊤)G = GΠ, (A.6)

where Π = diag(π1, π2, . . . , πK), and G is an orthogonal K×K matrix satisfying G−1 = G⊤.

We claim that O = U−1G satisfies the conditions (A.3) and (A.4).

Proof. First, we see that

O⊤B⊤var(ξt)BO = G⊤(U⊤)−1U⊤UU−1G = IK . (A.7)

Second, we have by (A.6),

Uvar(qt)U
⊤UO = UOΠ. (A.8)

Eliminating the invertible matrix U on both sides, we obtain

var(qt)U
⊤UO = OΠ. (A.9)

Note that

O⊤U⊤UO = G⊤G = IK . (A.10)

Therefore, we have

var(qt)(O
⊤)−1 = OΠ, (A.11)

which proves (A.4).
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A.2 Mean-Variance Optimization for Price Impacts

In this appendix, we present the theory of mean-variance optimization for price impacts.

We show that the optimal strategy for capitalizing on flow improves fundamental investing

strategies, providing theoretical support for empirical findings in Section 6.3.

We follow the notations in Section 3. Recall that under flow f , the asset returns from

time 0 to 1 are denoted as

R(f) =

(
X1

P1(f)
,
X2

P2(f)
, . . . ,

XN

PN(f)

)⊤

. (A.12)

In particular, the fundamental returns R(0) are asset returns when there are no flows.

As a starting point, we introduce the price impact ratio, which quantifies how flows

change a portfolio’s Sharpe ratio. For any portfolio c = (c1, c2, . . . , cN)
⊤, where cn is the

dollar value invested in asset n when asset prices are Pn(0), we define the price impact ratio

of portfolio c in the economy with flow f as

PIR(c, f) :=
c⊤∆p(f)

σ(c⊤R(0))
, (A.13)

where c⊤∆p(f) is the portfolio’s price impact and σ(c⊤R(0)) is the fundamental-return risk.

In this definition, the denominator usesR(0), the assets’ fundamental returns when there are

no flows, instead of R(f). This definition ensures that the measurement of portfolio risk is

not contaminated by flow-induced changes in time-0 asset prices. The following proposition

shows that the price impact ratio is flow-induced changes in the Sharpe ratios.

PROPOSITION A.1. We have

RFPIR(c, f) = SR(c,0)− SR(c, f), (A.14)

where the Sharpe ratio of portfolio c in the economy with flow f is defined in the standard
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way as

SR(c, f) :=
E[(W(f)c)⊤(R(f)−RF1)]

σ((W(f)c)⊤R(f))
, (A.15)

with the N×N diagonal matrix29 W(f) := diag(P1(f)/P1(0), P2(f)/P2(0), . . . , PN(f)/PN(0)).

Proof. We note that W(f)R(f) = R(0). Therefore, we have

SR(c,0)− SR(c, f) =
E[c⊤(R(0)−RF1)]

σ(c(f)⊤R(0))
− E[c⊤(R(0)−RFW(f)1)]

σ(c(f)⊤R(0))

=RF
E[c⊤(W(f)1− 1)]

σ(c(f)⊤R(0))
= RF

c⊤∆p(f)

σ(c⊤R(0))
= RFPIR(c, f). (A.16)

Next, we consider the mean-variance optimal portfolio of price impacts and show that

this portfolio improves fundamental investing strategies. We define the maximum-price-

impact-ratio (MPIR) portfolio under flow f as the portfolio with the maximum amount of

price impacts per unit of risks,

c̃∗(f) := var(R(0))−1∆p(f) ∈ arg max
c∈RN

PIR(c, f). (A.17)

The maximum-Sharpe-ratio portfolio under flow f is defined in the standard way as

c∗(f) := W(f)−1var(R(f))−1E[R(f)−RF1] ∈ arg max
c∈RN

SR(c, f). (A.18)

The MPIR portfolio c̃∗(f) is not simply the portfolio with the largest price impacts but

also depends on risks. Intuitively, we want to find two assets that either have opposite

price impacts but positively correlated risks (so we can long one and short the other) or have

similar price impacts but weakly or negatively correlated risks (so we can diversify). Trading

against the MPIR portfolio offers the best price-impact-versus-risk trade-off for a liquidity

29Recall that the portfolio weights c = (c1, c2, . . . , cN )⊤ are in the unit of dollar amounts invested in asset
n when asset prices are Pn(0). When asset prices change from Pn(0) to Pn(f) with flow f , the dollar amounts
need to change from c to W(f)c for the same portfolio.

48



provider. Theorem A.1 makes precise this intuition (see Appendix B.1 for a proof).

THEOREM A.1 (Two-portfolio separation). We have

c∗(f)︸ ︷︷ ︸
max. Sharpe ratio portfolio with flow

=

max. Sharpe ratio portfolio without flow︷ ︸︸ ︷
c∗(0) − RF c̃∗(f)︸ ︷︷ ︸

max. price impact ratio portfolio

. (A.19)

The return volatility of portfolio c∗(0) equals the maximum Sharpe ratio without flow. The

return volatility of portfolio c̃∗(f) equals the maximum price impact ratio.

Equation (A.19) shows that the maximum-Sharpe-ratio portfolio c∗(f) under flow f can be

separated into two. The first portfolio c∗(0) maximizes the Sharpe ratio in the same economy

but without flow or, equivalently, maximizes the Sharpe ratio driven by the fundamental

returns R(0). The second portfolio c̃∗(f) maximizes the price impact ratio under flow f .

Intuitively, the fundamental-investing portfolio c∗(0) is the static mean-variance optimal

portfolio that ignores the flow information. Many existing anomaly portfolios fall into this

category. On the other hand, the MPIR portfolio c̃∗(f), which we empirically construct,

optimally times the flow-induced changes in risk premia.

Theorem A.1 shows that longing the fundamental-investing portfolio c∗(0) and shorting

the MPIR portfolio c̃∗(f) maximize the overall Sharpe ratio. Empirically, this implies that

the Sharpe ratio of an existing anomaly should increase once we combine it with our MPIR

strategy. Because of diversification benefits, the two portfolios’ risk exposures are roughly

proportional to their respective fundamental-based Sharpe ratio and flow-based price impact

ratio. That is, in periods with greater noisy flows, marginal investors optimally allocate

greater risk exposure to liquidity provision; in periods with smaller flows, marginal investors

allocate greater risk exposure to fundamental investing.
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A.3 Idiosyncratic Flow and Mean-Variance Optimal Stratgy

In this appendix, we establish the theoretical linkage between the price impacts of idiosyn-

cratic flows and the mean-variance optimal strategy that capitalizes on these flows.

We run the second-stage regression (11), supplementing it with extra terms for idiosyn-

cratic flows,

rn,t =
N∑

m=1

an,mem,t +
K∑
k=1

λkq̃k,tcov(ξn,t, b̃
⊤
k ξt) + ξn,t. (A.20)

The idiosyncratic flow em,t of asset m at time t is the residual from the first-stage regression

(12). The coefficient an,m measures the residual price impact on asset n created by the

idiosyncratic flow into asset m. Our factor model (11) implies the null hypothesis

H0 : an,m = 0 for all n and m. (A.21)

That is, the idiosyncratic flow into any asset m should not generate price impacts for any

asset n, including itself. Let â be the N2 × 1 vector of parameter estimates ân,m. As period

T tends to infinity, the asymptotic χ2 test statistic for the null hypothesis is

T â⊤var(â)
−1

T
â ∼ χ2

N2 . (A.22)

To understand the economics of the χ2 test statistic, we study the mean-variance optimal

strategy that capitalizes on flows, as defined in Appendix A.2. Under our factor model (11),

the price impact of asset n at time t is δn,t :=
∑K

k=1 λ̂kq̃k,tcov(ξn,t, b̃
⊤
k ξt), where we use λ̂k

to denote the estimates of λk. As defined in (A.13), the price impact ratio of any portfolio

c ∈ RN at time t is c⊤δt/σ(c
⊤ξt), where the cross-section of price impact is denoted as

δt = (δ1,t, δ2,t, . . . , δN,t)
⊤, and the N assets’ fundamental returns at time t is denoted as ξt.

The maximum price impact ratio (MPIR) across all portfolios is

max
c∈RN

c⊤δt
σ(c⊤ξt)

=
√
δ⊤t var(ξt)

−1δt. (A.23)
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We define the time-series average of the model-implied squared MPIR as

θ2 :=
1

T

T∑
t=1

δ⊤t var(ξt)
−1δt. (A.24)

Similarly, the price impact under the model (A.20) with residual price impacts30 is δ̌n,t :=∑N
m=1 ân,mem,t +

∑K
k=1 λ̂kq̃k,tcov(ξn,t, b̃

⊤
k ξt), with δ̌t = (δ̌1,t, δ̌2,t, . . . , δ̌N,t)

⊤. We define the

time-series average of the realized squared MPIR as

θ̌2 :=
1

T

T∑
t=1

δ̌⊤t var(ξt)
−1δ̌t. (A.25)

The following theorem connects the MPIR to the residual impacts of idiosyncratic flows (see

Appendix B.3 for a proof).

THEOREM A.2. Assuming that en,t, b̃n,k, and q̃k,t are observed and the fundamental return

ξt is i.i.d. over time, we have, almost surely as T tends to infinity,

â⊤var(â)
−1

T
â = θ̌2 − θ2. (A.26)

Equation (A.26) shows that as period T tends to infinity, the χ2 test statistic for residual

price impacts in (A.22) equals the difference between the realized and model-implied average

squared MPIR. This result generalizes Gibbons, Ross, and Shanken (1989), who show that

the χ2 test statistic for anomaly expected returns of idiosyncratic risks equals the differ-

ence between the realized and model-implied squared maximum Sharpe ratio. Simply put,

Gibbons, Ross, and Shanken (1989) connect the idiosyncratic risks to the maximum Sharpe

ratio, whereas we connect the idiosyncratic flows to the maximum price impact ratio. We as-

sume observed regressors and i.i.d. fundamental returns to avoid econometric complications.

We leave the generalization of the Shanken (1992) correction for future research.

30Appendix B.2 proves that the estimated λ̂k remain unchanged in regressions (11) and (A.20).
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A.4 Details for the MPIR strategy

In this appendix, we provide details on constructing the MPIR strategy and how to combine

it with existing anomaly portfolios.

First, using equation (18), we define the staggered MPIR strategy in month s as

c̃{t}s :=
∑

k∈{MKT,SMB,HML}

−λ{t}k q̄
{t}
k,s b̃

{t}
k . (A.27)

The superscript {t} indicates that c̃
{t}
s is estimated using the training window up to month t.

The term λ
{t}
k represents the estimated price of flow-induced risk of factor k, q̄

{t}
k,s represents

the average flow into factor k over past six months s− 5, s− 4, . . . , s, and b̃
{t}
k represents the

portfolio weights of factor k.

Second, we compute the model-implied price impact ratio and actual price reversion of

the staggered MPIR portfolio c̃
{t}
s . By equation (A.13), the price impact ratio in month s is

κ{t}s :=

√ ∑
k∈{MKT,SMB,HML}

(
λ
{t}
k q̄

{t}
k,s

)2
, (A.28)

where we have applied the condition (b̃
{t}
k )⊤var(ξ){t}b̃

{t}
k = 1 and (b̃

{t}
k )⊤var(ξ){t}b̃

{t}
l = 0

for k ̸= l to simplify the expression. Similarly, the price reversion of the staggered MPIR

portfolio c̃
{t}
s in month s+ 1, normalized by its fundamental risk, is

κ̌{t}s :=
(c̃

{t}
s )⊤r̃s+1√

(c̃
{t}
s )⊤var(ξ){t}c̃

{t}
s

=
(c̃

{t}
s )⊤r̃s+1√∑

k∈{MKT,SMB,HML}

(
λ
{t}
k q̄

{t}
k,s

)2 , (A.29)

where r̃s+1 is the demeaned return of the 25 test assets in month s+ 1.

Third, we define the ratio of the average reversion to the average model-implied price

impact as

REV{t} =

∑t−1
s=6 κ̌

{t}
s∑t−1

s=6 κ
{t}
s

. (A.30)
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The summation over month s starts from 6 because q̄
{t}
k,s is the average flow over the past six

months and ends at t− 1 because rt is the last observable return using the training window

ending in month t.

Fourth, as discussed in the main text, we normalize the MPIR strategy using the in-

sample estimated reversion ratio, which is confined between 0 and 1. The formula is:

c̃∗t = max
(
min

(
REV{t}, 1

)
, 0
)
c̃
{t}
t . (A.31)

The MPIR strategy’s excess return in month t+ 1 is defined as

r̃∗t+1 = (c̃∗t )
⊤(rt+1 − rF,t+1), (A.32)

where rt+1 is the 25 test assets’ return in month t+ 1 and rF,t+1 is the net risk-free rate.

Finally, we combine the MPIR strategy with each of the anomaly portfolios using equation

(19). The mixing ratio is given by

wj,t := max

(
VOL

{t}
j

SR
{t}
j

, 0

)
(1 + rF,t+1), (A.33)

according to Theorem A.1. The term SR
{t}
j represents the Sharpe ratio of anomaly portfolio

j, and VOL
{t}
j represents the return standard deviation. Both terms are calculated utilizing

the same training windows as those used in the MPIR estimation. We normalize the MPIR

strategy by VOL
{t}
j /SR

{t}
j , rather than normalizing portfolio j by SR

{t}
j /VOL

{t}
j . We do so to

avoid normalizing portfolio j by the inverse of volatility in the time series, because Moreira

and Muir (2017) show that such normalization per se increases the Sharpe ratio. Because

the estimated Sharpe ratio SR
{t}
j could be negative, we bound the scaling by zero. That is,

we leave rj,t+1 unchanged if portfolio j has a negative historical Sharpe ratio up to month t.
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B Proofs

In this appendix, we provide proof.

B.1 Proof of Theorem A.1

We note that W(f)R(f) = R(0). Therefore, we have

var(R(f))−1 = W(f)var(R(0))−1W(f). (A.34)

Second, we have

R(0)−RF1+RF1 = W(f)(R(f)−RF1+RF1), (A.35)

which simplifies to

R(f)−RF1 = W(f)−1(R(0)−RF1−RF∆p(f)). (A.36)

Taking expectations on both sides, we have

E[R(f)]−RF1 = W(f)−1(E[R(0)]−RF1−RF∆p(f)). (A.37)

Therefore, by equations (A.34) and (A.37), we have

c∗(f) =W(f)−1var(R(f))−1(E[R(f)]−RF1)

= var(R(0))−1(E[R(0)]−RF1−RF∆p(f)) = c∗(0)−RF c̃
∗(f). (A.38)
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The return volatility of portfolio c∗(0) is

σ(c∗(0)⊤R(0)) =
√
c∗(0)⊤var(R(0))c∗(0) =

√
E[R(0)−RF1]⊤var(R(0))−1E[R(0)−RF1],

(A.39)

which equals the maximum Sharpe ratio without flow by definition (A.18). Similarly, the

return volatility of portfolio c̃∗(f) is

σ(c̃∗(f)⊤R(0)) =
√

c̃∗(f)⊤var(R(0))c̃∗(f) =
√
∆p(f)⊤var(R(0))−1∆p(f), (A.40)

which equals the maximum price impact ratio by definition (A.17).

B.2 Proof of the Simplifying Regression

We show that the panel regression (A.20),

rn,t =
N∑

m=1

an,mem,t +
K∑
k=1

λkq̃k,tcov(ξn,t, b̃
⊤
k ξt) + ξn,t, (A.41)

can be separated into two regressions. The first asset-by-asset time-series regression

rn,t =
N∑

m=1

an,mem,t + ξn,t. (A.42)

obtains the same an,m as regression (A.41). The second panel regression

rn,t =
K∑
k=1

λkq̃k,tcov(ξn,t, b̃
⊤
k ξt) + ξn,t, (A.43)

obtains the same λk as regression (A.41).

To see this fact, note that because the idiosyncratic flow em,t is the residual of the first-

stage regression (12), we know by construction that
∑T

t=1 qk,tem,t = 0. Because each q̃k,t is a

linear combination of q1,t, q2,t, . . . , qK,t, we know that
∑T

t=1 q̃k,tem,t = 0. We rewrite the panel
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regression (A.41) in vector form as

r =
N∑

n=1

N∑
m=1

an,men,m +
K∑
k=1

λkyk + ξ, (A.44)

where the NT × 1 vector r is

r = (r1,1, r1,2, . . . , r1,T , r2,1, r2,2, . . . , r2,T , . . . , rN,1, rN,2, . . . , rN,T )
⊤. (A.45)

Each vector en,m is an NT × 1 vector with only the (n− 1)T + 1-th to nT -th entry ranging

from em,1 to em,T and all other entries equaling zero. Each yk is an NT × 1 vector

yk =

q̃k,1cov(ξ1,t, b̃⊤
k ξt), . . . , q̃k,T cov(ξ1,t, b̃

⊤
k ξt)︸ ︷︷ ︸

T terms

, . . . , q̃k,1cov(ξN,t, b̃
⊤
k ξt), . . . , q̃k,T cov(ξN,t, b̃

⊤
k ξt)︸ ︷︷ ︸

T terms


⊤

.

(A.46)

The vector ξ simply stacks all error terms ξn,t.

Note that, for any n, m, and k, we have

e⊤n,myk = cov(ξn,t, b̃
⊤
k ξt)

T∑
t=1

q̃k,tem,t = 0, (A.47)

where the last equality uses the first step in the proof. As a result, to estimate coefficient

an,m and λk, it suffices to run separate regressions

r =
N∑

n=1

N∑
m=1

an,men,m + ξ and r =
K∑
k=1

λkyk + ξ. (A.48)

This first regression further reduces to the asset-by-asset time-series regression (A.42).
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B.3 Proof of Theorem A.2

First, we simplify the χ2 test statistics in (A.26). We write a 1 × N vector et =

(e1,t, e2,t, . . . , eN,t) and an N × 1 vector an = (an,1, an,2, . . . , an,N)
⊤, and we write regres-

sion (A.20) as

rn,t = etan +
K∑
k=1

λkq̃k,tcov(ξn,t, b̃
⊤
k ξt) + ξn,t. (A.49)

We define the T × N matrix e = (e1; e2; . . . ; eT ) and the N × 1 vector ξn =

(ξn,1, ξn,2, . . . , ξn,T )
⊤. As shown in Appendix B.2, we can run an asset-by-asset time-series

regression to obtain the point estimator of an as

ân = (e⊤e)−1e⊤



rn,1

rn,2

. . .

rn,T


= an + (e⊤e)−1e⊤ξn, (A.50)

where we use the fact that, for any n = 1, 2, . . . , N and k = 1, 2, . . . , K,
∑T

t=1 en,tq̃k,t = 0,

because en,t is the residual from the first-stage regression.

Therefore, we have, for any m and n,

cov(ân, âm) = (e⊤e)−1e⊤cov(ξn, ξm)e(e
⊤e)−1 = (e⊤e)−1Σξ(n,m), (A.51)

because ξt is i.i.d. over time. The term Σξ(n,m) is the (n,m)-th element of the cross-

sectional variance-covariance matrix of ξt. When constructing the χ2 test statistic, we use

the asymptotically consistent sample covariance matrix Σ̂ξ for the true Σξ. We denote

â = (â1; â2; . . . ; âN) as the N2 × 1 vector of parameter estimates. By equation (A.51), we

have

var(â) = Σ̂ξ ⊗ (e⊤e)−1, (A.52)
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where ⊗ represents the Kronecker product. Therefore, we have

â⊤var(â)
−1

T
â = â⊤

(
Σ̂−1

ξ ⊗ (e⊤e/T )
)
â. (A.53)

Under the null hypothesis of a = 0, we have

â⊤
(
Σ̂−1

ξ ⊗ (e⊤e/T )
)
â =

N∑
n=1

N∑
m=1

(
(e⊤e)−1e⊤ξn

)⊤
Σ̂−1

ξ (n,m)(e⊤e/T )(e⊤e)−1e⊤ξm (A.54)

=
1

T

N∑
n=1

N∑
m=1

Σ̂−1
ξ (n,m)ξ⊤n e(e

⊤e)−1e⊤ξm

=
1

T

N∑
n=1

N∑
m=1

Σ̂−1
ξ (n,m)ψ⊤

nψm (A.55)

=
1

T



ψ1

ψ2

. . .

ψN



⊤

(
Σ̂−1

ξ ⊗ IT

)


ψ1

ψ2

. . .

ψN


, (A.56)

where we define

ψn = e(e⊤e)−1e⊤ξn, (A.57)

as the projection of ξn onto the idiosyncratic flow space. In step (A.54), we use block matrix

multiplication for every N elements and Σ̂−1
ξ (n,m) is the (n,m)-th element of Σ̂−1

ξ . Step

(A.55) is because the projection matrix e(e⊤e)−1e⊤ is idempotent. In step (A.56), we use

the block-matrix multiplication in the reverse direction, with each ψn as a T × 1 vector.

We define ψt = (ψ1,t, ψ2,t, . . . , ψN,t)
⊤. In this way, ψn is the time-series variation in ψn,t

for a given asset n, and ψt is the cross-sectional variation in ψn,t for a given time t. By
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rearranging ψn into ψt, we have

1

T



ψ1

ψ2

. . .

ψN



⊤

(
Σ̂−1

ξ ⊗ IT

)


ψ1

ψ2

. . .

ψN


=

1

T

T∑
t=1

ψ⊤
t Σ̂

−1
ξ ψt. (A.58)

Because ξt is i.i.d. over time, the strong law of large numbers implies that the sample

covariance matrix Σ̂ξ converges to the trueΣξ almost surely as T tends to infinity. Therefore,

in the limit of T tending to infinity, we have almost surely,

â⊤var(â)
−1

T
â =

1

T

T∑
t=1

ψ⊤
t var(ξt)

−1ψt. (A.59)

Next, we transform the squared MPIR in (A.26). We have defined δ̌t =

(δ̌1,t, δ̌2,t, . . . , δ̌N,t)
⊤ as the cross-section of price impacts at time t in the main text. We

now define δ̌n = (δ̌n,1, δ̌n,2, . . . , δ̌n,T )
⊤. Using equations (A.50) and (A.57), we have

δ̌n = e(e⊤e)−1e⊤ξn +
K∑
k=1

λ̂kcov(ξn,t, b̃
⊤
k ξt)q̃k = ψn +

K∑
k=1

λ̂kcov(ξn,t, b̃
⊤
k ξt)q̃k, (A.60)

where q̃k = (q̃k,1, q̃k,2, . . . , q̃k,T )
⊤. In this way, δ̌n is the time-series variation in δ̌n,t for a given

asset n, and δ̌t is the cross-sectional variation in δ̌n,t for a given time t. Thus, we have

δ̌t = ψt + var(ξt)
K∑
k=1

λ̂kq̃k,tb̃k. (A.61)
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The realized squared MPIR at time t is

δ̌⊤t var(ξt)
−1δ̌t

=

(
ψ⊤

t +
K∑
k=1

λ̂kq̃k,tb̃
⊤
k var(ξt)

)
var(ξt)

−1

(
ψt + var(ξt)

K∑
k=1

λ̂kq̃k,tb̃k

)

=ψ⊤
t var(ξt)

−1ψt + 2ψ⊤
t

K∑
k=1

λ̂kq̃k,tb̃k +

(
K∑
k=1

λ̂kq̃k,tb̃
⊤
k

)
var(ξt)

K∑
k=1

λ̂kq̃k,tb̃k

=ψ⊤
t var(ξt)

−1ψt + 2ψ⊤
t

K∑
k=1

λ̂kq̃k,tb̃k +
K∑
k=1

λ̂2kq̃
2
k,t, (A.62)

where, in the last step, we use B̃⊤var(ξt)B̃ = IK . The time-series average is

θ̌2 =
1

T

T∑
t=1

δ̌⊤n var(ξt)
−1δ̌n

=
1

T

T∑
t=1

ψ⊤
t var(ξt)

−1ψt +
2

T

T∑
t=1

ψ⊤
t

K∑
k=1

λ̂kq̃k,tb̃k +
1

T

T∑
t=1

K∑
k=1

λ̂2kq̃
2
k,t. (A.63)

Note that for any n = 1, 2, . . . , N and k = 1, 2, . . . , K, we have

T∑
t=1

q̃k,tψn,t =
T∑
t=1

q̃k,tet(e
⊤e)−1e⊤ξn

=

(
T∑
t=1

q̃k,te1,t,
T∑
t=1

q̃k,te2,t, . . . ,
T∑
t=1

q̃k,teN,t

)
(e⊤e)−1e⊤ξn = 0. (A.64)

Therefore, we know that

θ̌2 =
1

T

T∑
t=1

ψ⊤
t var(ξt)

−1ψt +
1

T

T∑
t=1

K∑
k=1

λ̂2kq̃
2
k,t. (A.65)

A similar calculation gives

θ2 =
1

T

T∑
t=1

K∑
k=1

λ̂2kq̃
2
k,t. (A.66)
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Therefore, we have

θ̌2 − θ2 =
1

T

T∑
t=1

ψ⊤
t var(ξt)

−1ψt. (A.67)

Using (A.59), we have almost surely in the limit of T tending to infinity,

â⊤var(â)
−1

T
â =

1

T

T∑
t=1

ψ⊤
t var(ξt)

−1ψt = θ̌2 − θ2. (A.68)

C Construction and Cleaning of Mutual Fund Flows

In this appendix, we present details involved in constructing and cleaning mutual fund flows.

Our primary data source is the CRSP Survivorship-Bias-Free Mutual Fund database.

We start with all funds’ return and total net assets (TNA) data at the share-class level. A

mutual fund may include multiple share classes. We first drop observations with no valid

CRSP identifier, crsp fundno. A few fund-share classes report multiple TNAs in a given

month. These are likely data duplicates, so we keep only the first observation of the month.

We end up with 8,591,018 share-class×month observations. In what follows, we discuss the

cleaning steps for returns and TNA at the share-class level. After cleaning, we aggregate the

share-class level data to the fund level.

C.1 Return Cleaning

We first correct data errors in monthly net returns, mret.

First, we address extremely positive returns. We study the case in which a particular

fund share has returns greater than 100% and has existed for more than one year.31 We

manually check the entire time series of each share class in this subsample. Most of these

extreme returns reflect misplaced decimal points, which confound returns in decimal and

percentage formats. For these cases, we divide the faulty returns by 100.

31We use the one-year threshold because mutual fund return and TNA during the first year are sometimes
inaccurate in the CRSP database. For example, return and TNA can be stale or reported using a placeholder
number such as 0.1. We address these issues by cross-checking with the alternative database.

61



Second, we address extreme negative returns. Similarly, we study the case in which

a particular fund share has existed for more than one year and has returns lower than

−50%. With extremely negative returns, we need to distinguish data errors from significantly

negative returns before a fund’s closure. Thus, we manually check only the subsample of

negative returns that occur at least one year prior to the last observation of a closed fund. We

manually check whether these extreme returns reflect data-input errors for this subsample.

For the cases with misplaced decimal points, we divide the faulty returns by 100.

C.2 TNA Cleaning

Unlike many prior studies that construct percentage mutual fund flows, we study dollar-value

flows to preserve the cross-sectional relative magnitudes. The mutual fund size distribution

features a very long right tail. Winsorizing the extreme dollar-value TNA likely removes

both valid large values and input errors, generating significant bias. We devise an algorithm

to identify and correct erroneous observations of TNA:

1. Using the sample with corrected returns, we calculate dollar flows as in (13) at the

share-class level.

2. We study the top and bottom 0.5% of all dollar flows.32 We manually check this

subsample’s TNA time series of all share classes. We identify several common errors:

• Misplaced decimal points (usually by hundredths or thousandths).

• Stale TNA observations from CRSP, typically when a fund reorganizes its share

class offering (e.g., adding a new share class and moving assets into a single share

class).

• CRSP sometimes sets TNA = 0.1 for the first few months of a new fund or a new

share class.

32The choice of the top and bottom 0.5% is motivated by the distribution of dollar flows, where most
extreme values tend to occur at these tails.
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We correct the misplaced decimal issue. For funds suffering from the latter two

problems, we obtain their TNA from Morningstar.33 Morningstar’s TNA data

(Net Assets ShareClass Monthly) suffer to a lesser extent from these issues than

CRSP’s TNA data. We conclude by further cross-checking other third-party vendors

(e.g., Yahoo Finance and Bloomberg Terminal). Hence, whenever a fund’s CRSP TNA

deviates more than 50% from its Morningstar TNA, we use the Morningstar TNA.

3. We repeat the previous steps one more time to ensure that we have accounted for most,

if not all, extreme errors.

4. We compare our cleaned TNA with total assets (assets) from Thomson/Refinitiv

Holdings data.34 Following Coval and Stafford (2007) and Lou (2012), we drop obser-

vations whenever our cleaned TNA deviate more than 50% from assets from Thom-

son/Refinitiv.

Using cleaned return and TNA data, we calculate dollar flows at the share-class level using

equation (13). We obtain a fund’s flows by adding up the flows of all share classes in the

same fund. The final sample contains 1,613,579 fund×month observations.

C.3 Cross-Validating the Data-Cleaning Procedure

We cross-validate our data-cleaning procedure. We compute the aggregate mutual fund flows

in dollar amounts each month. We compare our aggregate flow measures with alternative

sources, including the Investment Company Institute (ICI) and the Flow of Funds (FoF).

The ICI provides aggregate monthly mutual fund flows. We obtain a version of ICI

aggregate flows data from 2007 to 2020. We use the ICI’s Total Equity mutual fund flows,

which feature a close coverage scope to mutual funds in our sample. The FoF data (now

known as “Financial Accounts of the United States - Z.1”) are published quarterly by the

33We merge the CRSP and Morningstar databases using a fund’s ticker.
34We merge the two databases via the linking table MFLINKS, which WRDS provides.
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Figure A.1. Time series of aggregate mutual fund flows from various sources

2008 2010 2012 2014 2016 2018 2020

-200

-150

-100

-50

0

50

100
Monthly aggregate flows ($billion)

Our measure

ICI

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

-800

-600

-400

-200

0

200

400

600
Quarterly aggregate flows ($billion)

Our measure

ICI

FoF

Note: The left panel plots the monthly time series of our measure of aggregate mutual fund flows and
Investment Company Institute (ICI) flows. The right panel plots the quarterly time series of our measure,
ICI flows, and Flow of Funds (FoF) flows.

Federal Reserve Board. We use mutual fund flow (Line 28) of Corporate Equities (Table

223) and unadjusted flows (FU). We use the December 2021 vintage of the data because the

Federal Reserve revises historical FoF data every quarter.

Figure A.1 plots the time series of aggregate mutual fund flows from various sources.

The left panel shows the monthly time series of our measure and ICI flow, and the right

panel shows the quarterly time series of all three sources. Our measure of aggregate mutual

fund flows is broadly consistent with the other two sources. The correlation between our

aggregate flow measure and ICI flow is 0.68 at the monthly level and 0.80 at the quarterly

level. The correlation between our measure and FoF flow is 0.55 at the quarterly level.

The differences in Figure A.1 between the three measures of aggregate flows likely reflect

differences in mutual fund coverage. Specifically, the ICI flow tracks virtually all U.S. equity

mutual funds that invest in both domestic and world equity markets.35 The FoF flow, sourced

from unpublished ICI data, aggregates unadjusted flows into and out of all U.S. mutual funds

(including variable annuity long-term mutual funds). The FoF flow is calculated based

35The ICI is a trade association for the mutual fund industry, and virtually all U.S. mutual funds are ICI
members (Warther, 1995).
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on mutual fund assets in common stock, preferred stock, and rights and warrants.36 In

comparison, our mutual fund sample contains U.S. mutual funds that CRSP covers. CRSP

collects historical data from various sources.37 Due to the nature of the data collection

process, CRSP’s coverage is smaller than ICI’s coverage.

D Additional Empirical Results

In this appendix, we provide additional empirical results.

Table A.1 presents the process of rotating MKT, SMB, and HML factors from their

original counterparts. As depicted in the top-left panel, the MKT flow’s volatility is ap-

proximately six times that of the SMB and HML flows. Although the pairwise correlation

between these factors’ flow is small, it is not zero. In the top-right panel, we present the

correlations and standard deviations of the factors’ fundamental returns b⊤
k ξt. These returns

exhibit a high correlation, particularly between the MKT and HML factors. This high cor-

relation arises from the discrepancy between the estimated SMB and HML portfolio weights

bk and the original Fama-French portfolio weights, which is discussed in Section 5.2.

The bottom panel shows the rotated MKT, SMB, and HML factors, which exhibit un-

correlated flows and fundamental returns. We also provide the portfolio weights of these

rotated factors in the three figures at the end. Upon examination of these portfolio weights,

we note that the rotated factors can still be interpreted as market, size, and value factors.

Table A.2 presents the IV first-stage regression results for the third column of Table 2.

In this analysis, each factor’s flow is regressed on its corresponding concurrent night return

and the difference between one-month and six-month lagged flows. The flow into the MKT

factor is found to significantly chase concurrent night returns. On the other hand, the flows

into SMB and HML factors exhibit a more pronounced response to the differences in lagged

36See https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FA653064100&t=F.223&suf=Q.
37The sources include the Fund Scope Monthly Investment Company Magazine, the Investment Dealers

Digest Mutual Fund Guide, Investor’s Mutual Fund Guide, the United and Babson Mutual Fund Selector,
and the Wiesenberger Investment Companies Annual Volumes.
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Table A.1. Model rotation

original factors

flow fundamental return

correlation std correlation std

MKT SMB HML MKT SMB HML

MKT 1 0.11 0.25 5.34× 10−2 1 0.41 0.91 0.14

SMB 0.11 1 -0.11 0.83× 10−2 0.41 1 0.56 0.12

HML 0.25 -0.11 1 0.87× 10−2 0.91 0.56 1 0.28

rotated factors

flow fundamental return

correlation std correlation std

MKT SMB HML MKT SMB HML

MKT 1 0 0 0.85× 10−2 1 0 0 1

SMB 0 1 0 0.10× 10−2 0 1 0 1

HML 0 0 1 0.07× 10−2 0 0 1 1
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Note: The top panel reports the correlations and standard derivations of flows and fundamental returns of
the original MKT, SMB, and HML factors. The bottom panel reports the rotated MKT, SMB, and HML
factors. The unit of flow is expressed as a percentage of the total stock market capitalization. The three
figures at the end illustrate the portfolio weights of these rotated factors.

flows. The F-statistics hover around six for these factors.

In Table A.3, we perform a robustness check on Table 2 by focusing on unexpected flow

components, which are measured following the methodology of Lou (2012). We first estimate

each fund’s Fama-French four-factor alphas using the fund’s monthly returns and a one-year

rolling window. These alphas are then used to predict fund flows in a regression model,

and the residuals serve as unexpected flows. Next, we calculate stock-level unexpected

flow-induced trading by aggregating fund-level unexpected flows based on lagged holdings.

Finally, we repeat the analyses in Section 5 to construct unexpected flows for the Fama-
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Table A.2. IV first-stage regression

MKT flow SMB flow HML flow

concurrent night return 89.03×10−4 -5.72×10−4 -1.68×10−4

(2.35) (-1.29) (-0.49)

lag-1 flow − lag-6 flow 0.10 0.15 0.17

(1.70) (3.74) (3.27)

constant -5.01×10−4 -0.19×10−4 0.25×10−4

(-0.92) (-0.29) (0.59)

regression R2 4.90% 4.81% 3.85%

F-statistics 6.19 6.06 4.81

Note: We report the IV first-stage regression results, with each factor’s flow being regressed against its
concurrent night return and the difference between one-month and six-month lagged flows. The figures in
parentheses represent the t-statistics, computed using heteroskedasticity-robust standard errors.

Table A.3. Robustness check for second-stage regression using unexpected flows

total return OLS intraday return OLS intraday return IV

λMKT 9.88 7.33 6.34

(14.07) (14.10) (2.01)

λSMB 140.96 69.49 206.68

(10.17) (5.37) (5.11)

λHML 116.70 55.69 219.49

(3.06) (1.71) (1.34)

Note: In this table, we run the second-stage regression of 5×5 asset returns on the product of factor flows
and the quantity of risk to estimate the price of flow-induced risk. We calculate flows based on unexpected
components, following the methodology of Lou (2012). The unit of flow is expressed as a percentage of the
total stock market capitalization, and the quantity of risk is expressed in terms of the annualized variance
in returns. The first two columns display the OLS estimation results using total returns and intraday
(open-to-close) returns. The third column outlines the IV estimation results using intraday returns, in
which each factor flow is instrumented by the factor’s concurrent overnight (close-to-open) return and the
difference between one-month and half-year lagged flows. The figures in parentheses represent the t-statistics,
computed using heteroskedasticity-robust standard errors.

French three factors and 5×5 test assets and then estimate the price of flow-induced risk λk.

The findings, detailed in Table A.3, closely align with the baseline results in Table 2.

To rule out that the enhanced performance for existing anomalies is merely a mechanical

effect of strategy combination, as per equation (19), Figure A.2 conducts a placebo test for

Figure 6. This time, we substitute our MPIR strategy with the short-term reversal from
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Jegadeesh (1990) and the long-term reversal from De Bondt and Thaler (1985). In each

month, we scale the reversal strategy so that the combined portfolio allocates risk between

the original anomaly and the reversal strategy proportional to their respective Sharpe ratios.

Replacing (19), the new formula is

r∗j,t+1 = rj,t+1 + wj,trrev,t+1 with wj,t := max

(
VOL

{t}
j

SR
{t}
j

, 0

)
max

(
SR{t}

rev

VOL{t}
rev

, 0

)
. (A.69)

Here, SR
{t}
j and SR{t}

rev represent the Sharpe ratios of the anomaly portfolio j and reversal

strategy, whereas VOL
{t}
j and VOL{t}

rev represent their respective return standard deviations.

Figure A.2 reveals negligible or negative improvements in mean and median Sharpe ratios:

−0.02 and 0.00 for short-term reversal, and −0.11 and −0.14 for long-term reversal, respec-

tively.
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Figure A.2. Alternative reversal strategies and the Sharpe ratios of anomaly portfolios
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(A) Short-term reversal
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(B) Long-term reversal

Note: The blue dots in the figure represent the out-of-sample annualized Sharpe ratio of the Jensen, Kelly, and
Pedersen (2021) 154 portfolios, including the Fama-French-Carhart six factors and a large list of other firm
characteristics-based anomaly portfolios. The red diamonds represent the Sharpe ratio of the portfolio that
combines the original portfolio with two alternative reversal strategies: short-term reversal from Jegadeesh
(1990) (panel A) and long-term reversal from De Bondt and Thaler (1985) (panel B). The expanding windows
span from January 2000 to December 2004, and the out-of-sample testing period extends from January 2005
to September 2020.
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